Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging

[1]  M. Abidian,et al.  A Review of Organic and Inorganic Biomaterials for Neural Interfaces , 2014, Advanced materials.

[2]  Louis Bodmer ACKNOWLEDGEMENTS , 2013, Journal of Biosciences.

[3]  R. Clay Reid,et al.  Chronic Cellular Imaging of Entire Cortical Columns in Awake Mice Using Microprisms , 2013, Neuron.

[4]  Rong Huang,et al.  Enhancement of electrical signaling in neural networks on graphene films. , 2013, Biomaterials.

[5]  G. Buzsáki,et al.  An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications , 2013, Journal of neural engineering.

[6]  Michela Chiappalone,et al.  A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. , 2013, Nature materials.

[7]  P. Osten,et al.  Mapping brain circuitry with a light microscope , 2013, Nature Methods.

[8]  James M Tour,et al.  Biocompatibility of pristine graphene for neuronal interface. , 2013, Journal of neurosurgery. Pediatrics.

[9]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[10]  J. Dai,et al.  Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells , 2013, Scientific Reports.

[11]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[12]  Jongho Lee,et al.  High-Performance Current Saturating Graphene Field-Effect Transistor With Hexagonal Boron Nitride Dielectric on Flexible Polymeric Substrates , 2013, IEEE Electron Device Letters.

[13]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[14]  Hai Zhu,et al.  Graphene-enabled silver nanoantenna sensors. , 2012, Nano letters.

[15]  M. Avoli,et al.  Jasper's basic mechanisms of the epilepsies , 2012 .

[16]  Timothy D. Wilkinson,et al.  CLEO: Science and Innovations , 2012, CLEO 2012.

[17]  Jongho Lee,et al.  Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics , 2012 .

[18]  Hajime Takano,et al.  Deterministic and Stochastic Neuronal Contributions to Distinct Synchronous CA3 Network Bursts , 2012, The Journal of Neuroscience.

[19]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[20]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[21]  K. Bolotin,et al.  Graphene: corrosion-inhibiting coating. , 2012, ACS nano.

[22]  Michael C. McAlpine,et al.  Graphene-based wireless bacteria detection on tooth enamel , 2012, Nature Communications.

[23]  Karl Deisseroth,et al.  Optetrode: a multichannel readout for optogenetic control in freely moving mice , 2011, Nature Neuroscience.

[24]  Qin Song,et al.  The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. , 2011, Biomaterials.

[25]  Luciano Fadiga,et al.  Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio , 2011, Journal of neural engineering.

[26]  P. Leleux,et al.  Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings , 2011, Advanced materials.

[27]  Moon Gyu Sung,et al.  Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene , 2011, Advanced materials.

[28]  Daryl R Kipke,et al.  Theoretical analysis of intracortical microelectrode recordings , 2011, Journal of neural engineering.

[29]  E. Wang,et al.  Super-elastic graphene ripples for flexible strain sensors. , 2011, ACS nano.

[30]  Daoben Zhu,et al.  Chemical doping of graphene , 2011 .

[31]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[32]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[33]  G. Tulevski,et al.  Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. , 2010, ACS nano.

[34]  Qiang Li,et al.  Suspended graphene sensors with improved signal and reduced noise. , 2010, Nano letters.

[35]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[36]  Qi Zhao,et al.  Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording , 2009, NIPS.

[37]  David C. Martin,et al.  Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. , 2009, Nano letters.

[38]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[39]  Jacob G. Bernstein,et al.  Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain , 2009, Neuron.

[40]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[41]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[42]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[43]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[44]  B. Botterman,et al.  Carbon nanotube coating improves neuronal recordings. , 2008, Nature nanotechnology.

[45]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[46]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[47]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[48]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C Baumgartner,et al.  Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. , 1990, Journal of neurophysiology.

[50]  G. Gross,et al.  Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures , 1985, Journal of Neuroscience Methods.

[51]  H. Jasper,et al.  Basic Mechanisms of the Epilepsies , 1971, Journal of the Royal College of Physicians of London.

[52]  L. Tarassenko,et al.  Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE , 2014 .

[53]  Ieee Staff,et al.  2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) , 2014 .

[54]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[55]  D. Coulter,et al.  In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording , 2008, Nature Protocols.

[56]  J. Willerson,et al.  LABORATORY INVESTIGATION , 2005 .