REVIEW brain rhythms and cognitive processing

Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.

[1]  John-Stuart Brittain,et al.  Oscillations and the basal ganglia: Motor control and beyond , 2014, NeuroImage.

[2]  M. Cunningham,et al.  Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer , 2013, Front. Hum. Neurosci..

[3]  Nancy Kopell,et al.  Effects of Heterogeneous Periodic Forcing on Inhibitory Networks , 2013, SIAM J. Appl. Dyn. Syst..

[4]  J. Gold,et al.  The Basal Ganglia’s Contributions to Perceptual Decision Making , 2013, Neuron.

[5]  Michelle M. McCarthy,et al.  Excitable Neurons, Firing Threshold Manifolds and Canards , 2013, Journal of mathematical neuroscience.

[6]  Anna S. Mitchell,et al.  What does the mediodorsal thalamus do? , 2013, Front. Syst. Neurosci..

[7]  Miles A. Whittington,et al.  Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model , 2013, PLoS Comput. Biol..

[8]  Michael J. Jutras,et al.  Oscillatory activity in the monkey hippocampus during visual exploration and memory formation , 2013, Proceedings of the National Academy of Sciences.

[9]  Mario Dipoppa,et al.  Flexible frequency control of cortical oscillations enables computations required for working memory , 2013, Proceedings of the National Academy of Sciences.

[10]  E. Maris,et al.  Somatosensory Demands Modulate Muscular Beta Oscillations, Independent of Motor Demands , 2013, The Journal of Neuroscience.

[11]  Ian Schofield,et al.  A Neocortical Delta Rhythm Facilitates Reciprocal Interlaminar Interactions via Nested Theta Rhythms , 2013, The Journal of Neuroscience.

[12]  J. Quevedo,et al.  Rivastigmine reverses cognitive deficit and acetylcholinesterase activity induced by ketamine in an animal model of schizophrenia , 2013, Metabolic Brain Disease.

[13]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[14]  N. Sigala,et al.  Dynamic Coding for Cognitive Control in Prefrontal Cortex , 2013, Neuron.

[15]  Christoph Börgers,et al.  Toggling between gamma-frequency activity and suppression of cell assemblies , 2013, Front. Comput. Neurosci..

[16]  Sylvain Crochet,et al.  Synaptic Computation and Sensory Processing in Neocortical Layer 2/3 , 2013, Neuron.

[17]  E. Rolls,et al.  Brain mechanisms for perceptual and reward-related decision-making , 2013, Progress in Neurobiology.

[18]  G. Bernardi,et al.  Neurosteroid and neurotransmitter alterations in Parkinson’s disease , 2013, Frontiers in Neuroendocrinology.

[19]  K. Zaghloul,et al.  The role of the subthalamic nucleus in cognition , 2013, Reviews in the neurosciences.

[20]  Ryan D Ward,et al.  Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition , 2013, Neuron.

[21]  Martin Sarter,et al.  Leveraging the cortical cholinergic system to enhance attention , 2013, Neuropharmacology.

[22]  L. Vécsei,et al.  Somatostatin and cognitive function in neurodegenerative disorders. , 2012, Mini reviews in medicinal chemistry.

[23]  Michelle M. McCarthy,et al.  The Effect of Propofol Anesthesia on Rebound Spiking , 2012, SIAM J. Appl. Dyn. Syst..

[24]  Jose M. Carmena,et al.  Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in Multiscale Networks , 2012, PLoS Comput. Biol..

[25]  Eric L. Denovellis,et al.  Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex , 2012, Neuron.

[26]  Dimitri M. Kullmann,et al.  Efficient “Communication through Coherence” Requires Oscillations Structured to Minimize Interference between Signals , 2012, PLoS Comput. Biol..

[27]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[28]  Roger D. Traub,et al.  Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks , 2012, Neuron.

[29]  S. Sarma,et al.  The effects of DBS patterns on basal ganglia activity and thalamic relay , 2012, Journal of Computational Neuroscience.

[30]  E. Benarroch Effects of acetylcholine in the striatum , 2012, Neurology.

[31]  Sabine Weiss,et al.  “Too Many betas do not Spoil the Broth”: The Role of Beta Brain Oscillations in Language Processing , 2012, Front. Psychology.

[32]  D. Kullmann,et al.  Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling , 2012, Nature Neuroscience.

[33]  Maureen A. Hagan,et al.  Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching , 2012, Neuron.

[34]  Daniel K. Leventhal,et al.  Basal Ganglia Beta Oscillations Accompany Cue Utilization , 2012, Neuron.

[35]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[36]  Roger D. Traub,et al.  Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex , 2011, The Journal of Neuroscience.

[37]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[38]  Michelle M. McCarthy,et al.  Striatal origin of the pathologic beta oscillations in Parkinson's disease , 2011, Proceedings of the National Academy of Sciences.

[39]  R. Romo,et al.  Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making , 2011, Proceedings of the National Academy of Sciences.

[40]  Felix Blankenburg,et al.  Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans , 2011, Proceedings of the National Academy of Sciences.

[41]  J. Wickens,et al.  Power Fluctuations in Beta and Gamma Frequencies in Rat Globus Pallidus: Association with Specific Phases of Slow Oscillations and Differential Modulation by Dopamine D1 and D2 Receptors , 2011, The Journal of Neuroscience.

[42]  N Kopell,et al.  Neuronal assembly dynamics in the beta1 frequency range permits short-term memory , 2011, Proceedings of the National Academy of Sciences.

[43]  A. Engel,et al.  Cortical Network Dynamics of Perceptual Decision-Making in the Human Brain , 2011, Frontiers in Human Neuroscience.

[44]  E. Brown,et al.  General anesthesia, sleep, and coma. , 2010, The New England journal of medicine.

[45]  Miles A. Whittington,et al.  Human Neuroscience , 2022 .

[46]  Dominique L. Pritchett,et al.  Cued Spatial Attention Drives Functionally Relevant Modulation of the Mu Rhythm in Primary Somatosensory Cortex , 2010, The Journal of Neuroscience.

[47]  John R. Terry,et al.  Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus–Globus Pallidus Network , 2010, The Journal of Neuroscience.

[48]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[49]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[50]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[51]  Belinda Pletzer,et al.  When frequencies never synchronize: The golden mean and the resting EEG , 2010, Brain Research.

[52]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[53]  Fiona E. N. LeBeau,et al.  Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro , 2010, Front. Neural Circuits.

[54]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[55]  Shane Lee,et al.  Cortical Gamma Rhythms Modulate NMDAR-Mediated Spike Timing Dependent Plasticity in a Biophysical Model , 2009, PLoS Comput. Biol..

[56]  Mojgan Hodaie,et al.  Dopamine-dependent high-frequency oscillatory activity in thalamus and subthalamic nucleus of patients with Parkinson's disease , 2009, Neuroreport.

[57]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[58]  Peter Brown,et al.  Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans , 2009, Current Biology.

[59]  Andreas K. Engel,et al.  Buildup of Choice-Predictive Activity in Human Motor Cortex during Perceptual Decision Making , 2009, Current Biology.

[60]  Y. Kawaguchi,et al.  Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons , 2009, The Journal of Neuroscience.

[61]  K. Bäuml,et al.  Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. , 2009, Cerebral cortex.

[62]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[63]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[64]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[65]  M. Shadlen,et al.  Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex , 2009, Science.

[66]  Thomas Wichmann,et al.  The thalamostriatal systems: Anatomical and functional organization in normal and parkinsonian states , 2009, Brain Research Bulletin.

[67]  Emery N Brown,et al.  Potential Network Mechanisms Mediating Electroencephalographic Beta Rhythm Changes during Propofol-Induced Paradoxical Excitation , 2008, The Journal of Neuroscience.

[68]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[69]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[70]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[71]  G. Deuschl,et al.  Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. , 2008, Journal of neurophysiology.

[72]  Marcus Kaiser,et al.  Temporal Interactions between Cortical Rhythms , 2008, Front. Neurosci..

[73]  Roger D. Traub,et al.  Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex , 2008, PLoS Comput. Biol..

[74]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[75]  Bijan Pesaran,et al.  Free choice activates a decision circuit between frontal and parietal cortex , 2008, Nature.

[76]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[77]  Lucy M. Carracedo,et al.  Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex , 2008, Frontiers in cellular neuroscience.

[78]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[79]  I. Stanford,et al.  Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro , 2008, Neuroscience.

[80]  Adriano B. L. Tort,et al.  On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[81]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[82]  Hilbert J. Kappen,et al.  Input-Driven Oscillations in Networks with Excitatory and Inhibitory Neurons with Dynamic Synapses , 2007, Neural Computation.

[83]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[84]  M. Scanziani,et al.  It's about time for thalamocortical circuits , 2007, Nature Neuroscience.

[85]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[86]  G. Curio,et al.  Task‐related differential dynamics of EEG alpha‐ and beta‐band synchronization in cortico‐basal motor structures , 2007, The European journal of neuroscience.

[87]  Miles A. Whittington,et al.  Low-Dimensional Maps Encoding Dynamics in Entorhinal Cortex and Hippocampus , 2006, Neural Computation.

[88]  Miles A Whittington,et al.  A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex , 2006, Proceedings of the National Academy of Sciences.

[89]  W. Szurhaj,et al.  Predominance of the contralateral movement-related activity in the subthalamo-cortical loop , 2006, Clinical Neurophysiology.

[90]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[91]  G. McNally,et al.  Opioid Receptors in the Nucleus Accumbens Regulate Attentional Learning in the Blocking Paradigm , 2006, The Journal of Neuroscience.

[92]  P. Brown,et al.  Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease , 2006, The European journal of neuroscience.

[93]  M. Shadlen,et al.  Neural Activity in Macaque Parietal Cortex Reflects Temporal Integration of Visual Motion Signals during Perceptual Decision Making , 2005, The Journal of Neuroscience.

[94]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[96]  Nancy Kopell,et al.  Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons , 2005, Neural Computation.

[97]  Michael E. Hasselmo,et al.  Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection , 2005, Brain Research Reviews.

[98]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[99]  W. Freiwald,et al.  Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. , 2004, Cerebral cortex.

[100]  Jonathan E. Rubin,et al.  High Frequency Stimulation of the Subthalamic Nucleus Eliminates Pathological Thalamic Rhythmicity in a Computational Model , 2004, Journal of Computational Neuroscience.

[101]  A. Graybiel,et al.  Synchronous, Focally Modulated β-Band Oscillations Characterize Local Field Potential Activity in the Striatum of Awake Behaving Monkeys , 2003, The Journal of Neuroscience.

[102]  M. Shadlen,et al.  A role for neural integrators in perceptual decision making. , 2003, Cerebral cortex.

[103]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[104]  I. Rektor,et al.  Event-related desynchronization/synchronization in the putamen. An SEEG case study , 2003, Experimental Brain Research.

[105]  David Q. Beversdorf,et al.  Central β-adrenergic modulation of cognitive flexibility , 2002 .

[106]  M. Frotscher,et al.  Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  John R Huguenard,et al.  Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex. , 2002, Journal of neurophysiology.

[108]  W. Singer,et al.  Oscillatory Neuronal Synchronization in Primary Visual Cortex as a Correlate of Stimulus Selection , 2002, The Journal of Neuroscience.

[109]  Charles J. Wilson,et al.  Activity Patterns in a Model for the Subthalamopallidal Network of the Basal Ganglia , 2002, The Journal of Neuroscience.

[110]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[111]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[112]  Fiona E. N. LeBeau,et al.  A model of gamma‐frequency network oscillations induced in the rat CA3 region by carbachol in vitro , 2000, The European journal of neuroscience.

[113]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  M. Sarter,et al.  Sustained Visual Attention Performance-Associated Prefrontal Neuronal Activity: Evidence for Cholinergic Modulation , 2000, The Journal of Neuroscience.

[115]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. I. Theory. , 2000, Journal of neurophysiology.

[117]  G. Siggins,et al.  Dynorphin selectively augments the M-current in hippocampal CA1 neurons by an opiate receptor mechanism. , 1999, Journal of neurophysiology.

[118]  D. Plenz,et al.  A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus , 1999, Nature.

[119]  O. Bertrand,et al.  Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans , 1999, Visual Neuroscience.

[120]  H Petsche,et al.  Synchronization between temporal and parietal cortex during multimodal object processing in man. , 1999, Cerebral cortex.

[121]  R. Traub,et al.  On the Mechanism of the γ → β Frequency Shift in Neuronal Oscillations Induced in Rat Hippocampal Slices by Tetanic Stimulation , 1999, The Journal of Neuroscience.

[122]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[123]  G B Ermentrout,et al.  Fine structure of neural spiking and synchronization in the presence of conduction delays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[124]  M. Hallett,et al.  Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. , 1997, Electroencephalography and clinical neurophysiology.

[125]  Marc G Caron,et al.  Dopamine receptors and brain function , 1996, Neuropharmacology.

[126]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[127]  S. D. Moore,et al.  Somatostatin augments the M-current in hippocampal neurons. , 1988, Science.

[128]  Iku Tsutsui-Kimura,et al.  Impulsive behavior and nicotinic acetylcholine receptors. , 2012, Journal of pharmacological sciences.

[129]  Andreas K. Engel,et al.  Multisensory Integration through Neural Coherence , 2012 .

[130]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[131]  Nancy Kopell,et al.  Gamma and Theta Rhythms in Biophysical Models of Hippocampal Circuits , 2010 .

[132]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[133]  R. Freedman,et al.  Schizophrenia and the alpha7 nicotinic acetylcholine receptor. , 2007, International review of neurobiology.

[134]  P. Brown,et al.  Bad oscillations in Parkinson's disease. , 2006, Journal of neural transmission. Supplementum.

[135]  Miles A. Whittington,et al.  New Roles for the Gamma Rhythm: Population Tuning and Preprocessing for the Beta Rhythm , 2004, Journal of Computational Neuroscience.

[136]  G. Ermentrout,et al.  Chapter 1 - Mechanisms of Phase-Locking and Frequency Control in Pairs of Coupled Neural Oscillators* , 2002 .

[137]  Erik D. Lumer,et al.  Effects of Spike Timing on Winner-Take-All Competition in Model Cortical Circuits , 2000, Neural Computation.