Christian Doppler Laboratory for High Efficient Composite Processing

The Christian Doppler Laboratory for High Efficient Composite Processing aims to elaborate on a basic understanding of different processing routes making it possible to manufacture high load bearing structural components as found in aerospace applications. Apart from background information and motivation, a more detailed description of the research topics under investigation and first results in the field of material characterization, sensing, and process control are presented.ZusammenfassungDas Christian Doppler Labor für Hocheffiziente Composite Verarbeitung zielt auf die Erarbeitung von Grundlagenkenntnissen zu unterschiedlichen Prozessrouten zur Herstellung von hoch leistungsfähigen Strukturkomponenten für Luftfahrtanwendungen. Neben Hintergrund und Motivation werden detailliertere Beschreibungen der in Bearbeitung befindlichen Forschungsfragestellungen und erste Ergebnisse im Bereich der Materialcharakterisierung, Sensorik und Prozesssteuerung vorgestellt.

[1]  Richard S. Parnas,et al.  New set-up for in-plane permeability measurement , 2007 .

[2]  H. Partanen,et al.  In-plane permeability measurements: a nordic round-robin study , 2000 .

[3]  P. Mitschang,et al.  Selection of Sewing Threads for Preform Manufacturing , 2004 .

[4]  John W. Gillespie,et al.  Development of a Distributed Direct Current Sensor System for Intelligent Resin Transfer Molding , 1999 .

[5]  Vistas P. Karbhari,et al.  Activity–based costing and managment in the composites product realization process , 2014 .

[6]  Ludwig Rebenfeld,et al.  In-Plane Flow of Fluids in Fabrics: Structure/Flow Characterization , 1987 .

[7]  E. Sozer,et al.  A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding , 2009 .

[8]  P. Eyerer,et al.  Ganzheitliche Bilanzierung von Produkten und Verfahren : ein Weg zur technischen, wirtschaftlichen und ökologischen Bewertung , 1991 .

[9]  E. Ladstätter,et al.  Permeability of stitched preform packages , 2005 .

[10]  Peter Popper,et al.  Some recent advances in the fabrication and design of three-dimensional textile preforms: a review , 2000 .

[11]  Ignace Verpoest,et al.  Permeability prediction for the meso–macro coupling in the simulation of the impregnation stage of Resin Transfer Moulding , 2010 .

[12]  Tsu-Wei Chou,et al.  Process-microstructure relationships of 2-step and 4-step braided composites , 1996 .

[13]  Constantinos Soutis,et al.  Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect , 2011, MSE 2011.

[14]  Hugo Sol,et al.  New set-up for measurement of permeability properties of fibrous reinforcements for RTM , 2002 .

[15]  J. Gillespie,et al.  Reactive and Nonreactive Binders in Glass/Vinyl Ester Composites , 2005 .

[16]  P. Mitschang,et al.  2D Permeability changes due to stitching seams , 2010 .

[17]  Richard Curran,et al.  Review of Aerospace Engineering Cost Modelling: The Genetic Causal Approach , 2004 .

[18]  A. Todoroki,et al.  Full-field monitoring of resin flow using an area-sensor array in a VaRTM process , 2011 .

[19]  Xianghuai Dong,et al.  3D numerical simulation of filling and curing processes in non-isothermal RTM process cycle , 2011 .

[20]  Hans-Jürgen Warnecke,et al.  Wirtschaftlichkeitsrechnung für Ingenieure , 1980 .

[21]  Jinhua Jiang,et al.  Influence of textile parameters on the in-plane Permeability , 2013 .

[22]  Ludwig Rebenfeld,et al.  Radial penetration of a viscous liquid into a planar anisotropic porous medium , 1988 .

[23]  Antonio Miravete,et al.  Proceedings of the Ninth International Conference on Composite Materials (ICCM/9), Madrid, 12-16 July, 1993 , 1993 .

[24]  Sven Bossuyt,et al.  2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method , 2008 .

[25]  Tsu-Wei Chou,et al.  Compaction of woven-fabric preforms: nesting and multi-layer deformation , 2000 .

[26]  S. Advani,et al.  An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding , 2002 .

[27]  Leon W. Davies,et al.  Effect of cure cycle heat transfer rates on the physical and mechanical properties of an epoxy matrix composite , 2007 .

[28]  A. Mamishev,et al.  Remote Monitoring of Resin Transfer Molding Processes by Distributed Dielectric Sensors , 2005 .

[29]  V. Michaud,et al.  Experimental determination of the permeability of textiles: A benchmark exercise , 2011 .

[30]  Constantinos Soutis,et al.  Potential emissions savings of lightweight composite aircraft components evaluated through life cycle assessment , 2011 .

[31]  Jian S. Dai,et al.  Product Cost Estimation: Technique Classification and Methodology Review , 2006 .

[32]  M. Bannister,et al.  Challenges for composites into the next millennium : a reinforcement perspective , 2001 .

[33]  Ludwig Rebenfeld,et al.  Permeability characteristics of multilayer fiber reinforcements. Part I: Experimental observations , 1991 .

[34]  A. E. Bogdanovich,et al.  Three-Dimensional Reinforcements for Composites , 2009 .

[35]  Andrew C. Long,et al.  Tow placement studies for liquid composite moulding , 1999 .

[36]  K. L. Adams,et al.  Permeability characteristics of multilayer fiber reinforcements. Part II: Theoretical model , 1991 .

[37]  C. Weimer Preform-engineering: applied sewing technologies to incorporate part and process functions into dry textile reinforcements , 2003 .

[38]  Ron Hess,et al.  Aircraft Airframe Cost Estimating Relationships , 1987 .

[39]  V. Altstädt,et al.  Mechanical performance of carbon fibre-reinforced composites based on stitched and bindered preforms , 2009 .