Bayesian estimation of a flexible bifactor generalized partial credit model to survey data

Item response theory (IRT) models provide an important contribution in the analysis of polytomous items, such as Likert scale items in survey data. We propose a bifactor generalized partial credit model (bifac-GPC model) with flexible link functions - probit, logit and complementary log-log - for use in analysis of ordered polytomous item scale data. In order to estimate the parameters of the proposed model, we use a Bayesian approach through the NUTS algorithm and show the advantages of implementing IRT models through the Stan language. We present an application to marketing scale data. Specifically, we apply the model to a dataset of non-users of a mobile banking service in order to highlight the advantages of this model. The results show important managerial implications resulting from consumer perceptions. We provide a discussion of the methodology for this type of data and extensions. Codes are available for practitioners and researchers to replicate the application.

[1]  S. McKay Curtis,et al.  BUGS Code for Item Response Theory , 2010 .

[2]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[3]  Jukka Riivari,et al.  Mobile banking: A powerful new marketing and CRM tool for financial services companies all over Europe , 2005 .

[4]  Shirley Taylor,et al.  Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions , 1995 .

[5]  J. Immekus,et al.  Dimensionality Assessment Using the Full-Information Item Bifactor Analysis for Graded Response Data , 2008 .

[6]  David G.W. Birch Mobile Financial Services:The internet isn't the only digital channel to consumers , 1999 .

[7]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[8]  Simona Vinerean,et al.  Using Factor Analysis in Relationship Marketing , 2013 .

[9]  H. Bolfarine,et al.  A skew item response model , 2006 .

[10]  A. Béguin,et al.  MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .

[11]  Massimo Franceschet,et al.  A cluster analysis of scholar and journal bibliometric indicators , 2009, J. Assoc. Inf. Sci. Technol..

[12]  Yanyan Sheng,et al.  Comparing Multiunidimensional and Unidimensional Item Response Theory Models , 2007 .

[13]  Mariagiulia Matteucci,et al.  Bayesian Estimation of a Multidimensional Additive Graded Response Model for Correlated Traits , 2016, Commun. Stat. Simul. Comput..

[14]  Michael D. Toland,et al.  Introduction to bifactor polytomous item response theory analysis. , 2017, Journal of school psychology.

[15]  J. Mazzon,et al.  Adoption of internet banking: proposition and implementation of an integrated methodology approach , 2007 .

[16]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[17]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[18]  Stephen Carter,et al.  Students-as-customers’ satisfaction, predictive retention with marketing implications: The case of Malaysian higher education business students , 2016 .

[19]  M. Reckase Multidimensional Item Response Theory , 2009 .

[20]  José Afonso Mazzon,et al.  Mobile banking: proposition of an integrated adoption intention framework , 2010 .

[21]  Fred D. Davis A technology acceptance model for empirically testing new end-user information systems : theory and results , 1985 .

[22]  Hal S. Stern,et al.  Posterior Predictive Assessment of Item Response Theory Models , 2006 .

[23]  Eliud Silva,et al.  Inferences on mortality using the Heligman-Pollard model: the Mexican case , 2018, Commun. Stat. Simul. Comput..

[24]  Jin-Soo Lee,et al.  Examination of Restaurant Quality, Relationship Benefits, and Customer Reciprocity From the Perspective of Relationship Marketing Investments , 2017 .

[25]  Jean-Paul Fox,et al.  Bayesian Item Response Modeling , 2010 .

[26]  S. Sahu Bayesian Estimation and Model Choice in Item Response Models , 2002 .

[27]  Anne Corinne Huggins-Manley,et al.  Sensitivity analysis and choosing between alternative polytomous IRT models using Bayesian model comparison criteria , 2019, Commun. Stat. Simul. Comput..

[28]  Christopher K. Wikle,et al.  Bayesian Multidimensional IRT Models With a Hierarchical Structure , 2008 .

[29]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[30]  Elham Hanifi,et al.  MOBILE BANKING , 2013 .

[31]  M. Curi,et al.  Improving psychometric assessment of the Beck Depression Inventory using Multidimensional Item Response Theory , 2013, Biometrical journal. Biometrische Zeitschrift.

[32]  S. Reise The Rediscovery of Bifactor Measurement Models , 2012 .

[33]  W. Marsden I and J , 2012 .

[34]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[35]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[36]  Gordon B. Davis,et al.  User Acceptance of Information Technology: Toward a Unified View , 2003, MIS Q..

[37]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[38]  Viswanath Venkatesh,et al.  Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology , 2012, MIS Q..

[39]  Steven P. Reise,et al.  The role of the bifactor model in resolving dimensionality issues in health outcomes measures , 2007, Quality of Life Research.

[40]  A. Gelman,et al.  Stan , 2015 .

[41]  I. Ajzen The theory of planned behavior , 1991 .

[42]  Yong Luo,et al.  Using the Stan Program for Bayesian Item Response Theory , 2018, Educational and psychological measurement.

[43]  Yanyan Sheng,et al.  BAYESIAN IRT MODELS INCORPORATING GENERAL AND SPECIFIC ABILITIES , 2009 .

[44]  E. Muraki A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .

[45]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[46]  I. Ajzen,et al.  Understanding Attitudes and Predicting Social Behavior , 1980 .

[47]  J. Merigó,et al.  Fifty years of the European Journal of Marketing: a bibliometric analysis , 2018 .

[48]  J. Fox Bayesian Item Response Modeling: Theory and Applications , 2010 .

[49]  Alina A. von Davier,et al.  Estimating the DINA model parameters using the No‐U‐Turn Sampler , 2018, Biometrical journal. Biometrische Zeitschrift.

[50]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[51]  Rebecca Holman,et al.  Modelling non-ignorable missing-data mechanisms with item response theory models. , 2005, The British journal of mathematical and statistical psychology.

[52]  Fumiko Samejima,et al.  Logistic positive exponent family of models: Virtue of asymmetric item characteristic curves , 2000 .