Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager

[1]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[2]  I. Sokolik,et al.  Complex refractive index of atmospheric dust aerosols , 1993 .

[3]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[4]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[5]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[6]  Teruyuki Nakajima,et al.  Development of a Two-Channel Aerosol Retrieval Algorithm on a Global Scale Using NOAA AVHRR , 1999 .

[7]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[8]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[9]  Yoram J. Kaufman,et al.  MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability , 2002 .

[10]  Yoram J. Kaufman,et al.  Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America , 2002 .

[11]  Teruyuki Nakajima,et al.  Detection of aerosol types over the East China Sea near Japan from four‐channel satellite data , 2002 .

[12]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[13]  D. Jacob,et al.  An intercomparison and evaluation of aircraft-derived and simulated CO from seven chemical transport models during the TRACE-P experiment , 2003 .

[14]  Yoram J. Kaufman,et al.  Remote sensing of suspended sediments and shallow coastal waters , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  Philip B. Russell,et al.  Geostationary satellite retrievals of aerosol optical thickness during ACE‐Asia , 2003 .

[16]  Zhanqing Li,et al.  Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer , 2005, Journal of Geophysical Research.

[17]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[18]  Pierre Coste,et al.  Radiometric calibration of COMS geostationary ocean color imager , 2006, SPIE Remote Sensing.

[19]  S. Martin,et al.  Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms , 2006 .

[20]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Toshihiko Takemura,et al.  Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign , 2007 .

[22]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[23]  M. Ahn,et al.  An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) imagery , 2007 .

[24]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[25]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[26]  Chang-Hoi Ho,et al.  Validation of cloud property retrievals from MTSAT-1R imagery using MODIS observations , 2009 .