Exocytosis: A Molecular and Physiological Perspective

[1]  Philip G. Zimbardo,et al.  Politicians' uniquely simple personalities , 1997, Nature.

[2]  W. Catterall,et al.  Inhibition of Neurotransmission by Peptides Containing the Synaptic Protein Interaction Site of N-Type Ca2+ Channels , 1996, Neuron.

[3]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[4]  George J. Augustine,et al.  Adaptation of Ca2+-Triggered Exocytosis in Presynaptic Terminals , 1996, Neuron.

[5]  M. Marcu,et al.  Recombinant Scinderin Enhances Exocytosis, an Effect Blocked by Two Scinderin-Derived Actin-Binding Peptides and PIP2 , 1996, Neuron.

[6]  M. Jackson,et al.  Rapid exocytosis and endocytosis in nerve terminals of the rat posterior pituitary. , 1996, The Journal of physiology.

[7]  Steven S. Vogel,et al.  Poisson-distributed active fusion complexes underlie the control of the rate and extent of exocytosis by calcium , 1996, The Journal of cell biology.

[8]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[9]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[10]  E. A. Schwartz,et al.  Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse. , 1996, The Journal of physiology.

[11]  W. Betz,et al.  Simultaneous independent measurement of endocytosis and exocytosis , 1996, Nature.

[12]  Robert S Zucker,et al.  Mechanisms Determining the Time Course of Secretion in Neuroendocrine Cells , 1996, Neuron.

[13]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[14]  R. Tsien,et al.  Functional impact of syntaxin on gating of N-type and Q-type calcium channels , 1995, Nature.

[15]  R. Fettiplace,et al.  Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells , 1995, Neuron.

[16]  A. Henkel,et al.  Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  R. Llinás,et al.  Role of the C2A domain of synaptotagmin in transmitter release as determined by specific antibody injection into the squid giant synapse preterminal. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Horstmann,et al.  Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells , 1995, Neuron.

[19]  R. Llinás,et al.  The concept of calcium concentration microdomains in synaptic transmission , 1995, Neuropharmacology.

[20]  D. Bruns,et al.  Real-time measurement of transmitter release from single synaptic vesicles , 1995, Nature.

[21]  W. Regehr,et al.  Calcium control of transmitter release at a cerebellar synapse , 1995, Neuron.

[22]  M. Turelli,et al.  The kinetics of quantal transmitter release from retinal amacrine cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[24]  Paul Greengard,et al.  Distinct pools of synaptic vesicles in neurotransmitter release , 1995, Nature.

[25]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[26]  R. Tsien,et al.  Properties of synaptic transmission at single hippocampal synaptic boutons , 1995, Nature.

[27]  Stephen J. Smith,et al.  Vesicle pool mobilization during action potential firing at hippocampal synapses , 1995, Neuron.

[28]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[29]  Alcino J. Silva,et al.  The α-Ca2+/calmodulin kinase II: A bidirectional modulator of presynaptic plasticity , 1995, Neuron.

[30]  M M Merzenich,et al.  Temporal information transformed into a spatial code by a neural network with realistic properties , 1995, Science.

[31]  C. Stevens,et al.  Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E Neher,et al.  Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R S Zucker,et al.  Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. , 1994, Biophysical journal.

[35]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[36]  C. Stevens,et al.  An evaluation of causes for unreliability of synaptic transmission. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Zucker,et al.  Residual Ca2 + and short-term synaptic plasticity , 1994, Nature.

[38]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[39]  W. Almers,et al.  Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurements in saccular hair cells , 1994, Neuron.

[40]  D W Tank,et al.  A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  R. Zucker,et al.  Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. , 1994, Journal of neurophysiology.

[42]  W A Roberts Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[44]  E. Neher,et al.  A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. , 1993, Science.

[45]  G. Augustine,et al.  Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis , 1993, Nature.

[46]  T. Carew,et al.  Activity-dependent potentiation of recurrent inhibition: a mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  F Benfenati,et al.  Synaptic vesicle phosphoproteins and regulation of synaptic function. , 1993, Science.

[48]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[49]  RS Zucker,et al.  Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  W. Yamada,et al.  Time course of transmitter release calculated from simulations of a calcium diffusion model. , 1992, Biophysical journal.

[51]  R S Zucker,et al.  Calcium in motor nerve terminals associated with posttetanic potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  S. Thesleff Transmitter release at the neuromuscular junction. , 1988, Puerto Rico health sciences journal.

[53]  J. Connor,et al.  Calcium levels measured in a presynaptic neurone of Aplysia under conditions that modulate transmitter release. , 1986, The Journal of physiology.

[54]  K. Magleby,et al.  A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction , 1982, The Journal of general physiology.

[55]  R Kretz,et al.  Post-tetanic potentiation at an identified synapse in Aplysia is correlated with a Ca2+-activated K+ current in the presynaptic neuron: evidence for Ca2+ accumulation. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[57]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[58]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[59]  R. Scheller,et al.  Synaptic vesicle biogenesis, docking, and fusion: a molecular description. , 1996, Physiological reviews.

[60]  W. G. Van der Kloot The rise times of miniature endplate currents suggest that acetylcholine may be released over a period of time. , 1995, Biophysical journal.

[61]  R. Miledi,et al.  Tetanic and post‐tetanic rise in frequency of miniature end‐plate potentials in low‐calcium solutions , 1971, The Journal of physiology.