A new clustering of antibody CDR loop conformations.

[1]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[2]  A C Martin,et al.  Modeling antibody hypervariable loops: a combined algorithm. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[4]  J. Thornton,et al.  Beta-turns and their distortions: a proposed new nomenclature. , 1990, Protein engineering.

[5]  A Tramontano,et al.  Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. , 1990, Journal of molecular biology.

[6]  E. Kabat,et al.  Sequences of proteins of immunological interest , 1991 .

[7]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[8]  A. Lesk,et al.  The structural repertoire of the human V kappa domain. , 1995, The EMBO journal.

[9]  Andrew J. Martin,et al.  Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. , 1996, Journal of molecular biology.

[10]  Haruki Nakamura,et al.  Structural classification of CDR‐H3 in antibodies , 1996, FEBS letters.

[11]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[12]  A Tramontano,et al.  Antibody structure, prediction and redesign. , 1997, Biophysical chemistry.

[13]  A. Lesk,et al.  Standard conformations for the canonical structures of immunoglobulins. , 1997, Journal of molecular biology.

[14]  M. Sternberg,et al.  Automated classification of antibody complementarity determining region 3 of the heavy chain (H3) loops into canonical forms and its application to protein structure prediction. , 1998, Journal of molecular biology.

[15]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[16]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[17]  A Tramontano,et al.  Conformations of the third hypervariable region in the VH domain of immunoglobulins. , 1998, Journal of molecular biology.

[18]  Haruki Nakamura,et al.  H3‐rules: identification of CDR‐H3 structures in antibodies , 1999, FEBS letters.

[19]  A R Rees,et al.  WAM: an improved algorithm for modelling antibodies on the WEB. , 2000, Protein engineering.

[20]  A Tramontano,et al.  Antibody modeling: implications for engineering and design. , 2000, Methods.

[21]  A. Plückthun,et al.  Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. , 2001, Journal of molecular biology.

[22]  Andrew C. R. Martin,et al.  SACS-Self-maintaining database of antibody crystal structure information , 2002, Bioinform..

[23]  Kouhei Tsumoto,et al.  The Role of Hydrogen Bonding via Interfacial Water Molecules in Antigen-Antibody Complexation , 2003, The Journal of Biological Chemistry.

[24]  Guoli Wang,et al.  PISCES: a protein sequence culling server , 2003, Bioinform..

[25]  D. Rice,et al.  High-resolution crystal structure of the Fab-fragments of a family of mouse catalytic antibodies with esterase activity. , 2003, Journal of molecular biology.

[26]  C. MacKenzie,et al.  Germline antibody recognition of distinct carbohydrate epitopes , 2003, Nature Structural Biology.

[27]  Dan S. Tawfik,et al.  Antibody Multispecificity Mediated by Conformational Diversity , 2003, Science.

[28]  J. Tanner,et al.  Structure of an anti‐DNA fab complexed with a non‐DNA ligand provides insights into cross‐reactivity and molecular mimicry , 2004, Proteins.

[29]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[30]  Guoli Wang,et al.  PISCES: recent improvements to a PDB sequence culling server , 2005, Nucleic Acids Res..

[31]  Seth I. Berger,et al.  Bmc Structural Biology Systematic Analysis of the Effect of Multiple Templates on the Accuracy of Comparative Models of Protein Structure , 2022 .

[32]  András Fiser,et al.  Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments , 2007, Bioinform..

[33]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[34]  Haruki Nakamura,et al.  Structural classification of CDR‐H3 revisited: A lesson in antibody modeling , 2008, Proteins.

[35]  Paolo Marcatili,et al.  PIGS: automatic prediction of antibody structures , 2008, Bioinform..

[36]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[37]  Jérôme Lane,et al.  IMGT®, the international ImMunoGeneTics information system® , 2004, Nucleic Acids Res..

[38]  Michael I. Jordan,et al.  Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model , 2010, PLoS Comput. Biol..