Improved efficiency of multilevel Monte Carlo for stochastic PDE through strong pairwise coupling

Multilevel Monte Carlo (MLMC) has become an important methodology in applied mathematics for reducing the computational cost of weak approximations. For many problems, it is well-known that strong pairwise coupling of numerical solutions in the multilevel hierarchy is needed to obtain efficiency gains. In this work, we show that strong pairwise coupling indeed is also important when (MLMC) is applied to stochastic partial differential equations (SPDE) of reaction-diffusion type, as it can improve the rate of convergence and thus improve tractability. For the (MLMC) method with strong pairwise coupling that was developed and studied numerically on filtering problems in [Chernov et al., Numer. Math., 147 (2021), 71-125], we prove that the rate of computational efficiency is higher than for existing methods. We also provide numerical comparisons with alternative coupling ideas illustrate the importance of this feature. The comparisons are conducted on a range of SPDE, which include a linear SPDE, a stochastic reaction-diffusion equation, and stochastic Allen–Cahn equation.

[1]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[2]  G. Lord,et al.  Stochastic exponential integrators for finite element discretization of SPDEs for multiplicative and additive noise , 2011, 1103.1986.

[3]  Peter E. Kloeden,et al.  The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds , 2011, J. Comput. Appl. Math..

[4]  Raul Tempone,et al.  Multilevel ensemble Kalman filtering for spatio-temporal processes , 2017, Numerische Mathematik.

[5]  Andrea Barth,et al.  Multilevel Monte Carlo method with applications to stochastic partial differential equations , 2012, Int. J. Comput. Math..

[6]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[7]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[8]  Trond Mannseth,et al.  Assessment of multilevel ensemble-based data assimilation for reservoir history matching , 2019, Computational Geosciences.

[9]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[10]  Assyr Abdulle,et al.  Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs , 2013, Multiscale Model. Simul..

[11]  Andrea Barth,et al.  Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2013 .

[12]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[13]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[14]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[15]  G. Lord,et al.  A new class of exponential integrators for SDEs with multiplicative noise , 2019 .

[16]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[17]  P. Kloeden,et al.  Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space–time noise , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Andreas Petersson,et al.  Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations , 2018, Math. Comput. Simul..

[19]  Neil K. Chada,et al.  Multilevel Ensemble Kalman-Bucy Filters , 2020, SIAM/ASA J. Uncertain. Quantification.

[20]  Robert Scheichl,et al.  Multilevel Markov Chain Monte Carlo , 2019, SIAM Rev..

[21]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[22]  Andrew J. Majda,et al.  Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .

[23]  Kody J. H. Law,et al.  Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..

[24]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[25]  C. Reisinger,et al.  Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..

[26]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[27]  Helmut Harbrecht,et al.  On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations , 2012 .

[28]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[29]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[30]  Kody J. H. Law,et al.  MULTI-INDEX SEQUENTIAL MONTE CARLO METHODS FOR PARTIALLY OBSERVED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2018, International Journal for Uncertainty Quantification.

[31]  G. Karniadakis,et al.  Numerical Methods for Stochastic Partial Differential Equations with White Noise , 2018 .

[32]  Timothy G. Feeman,et al.  The Mathematics of Medical Imaging: A Beginner's Guide , 2009, The Journal of Nuclear Medicine.

[33]  Tony Shardlow,et al.  Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Li Liu,et al.  A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges , 2020, Inf. Fusion.