暂无分享,去创建一个
[1] T. Faniran. Numerical Solution of Stochastic Differential Equations , 2015 .
[2] G. Lord,et al. Stochastic exponential integrators for finite element discretization of SPDEs for multiplicative and additive noise , 2011, 1103.1986.
[3] Peter E. Kloeden,et al. The exponential integrator scheme for stochastic partial differential equations: Pathwise error bounds , 2011, J. Comput. Appl. Math..
[4] Raul Tempone,et al. Multilevel ensemble Kalman filtering for spatio-temporal processes , 2017, Numerische Mathematik.
[5] Andrea Barth,et al. Multilevel Monte Carlo method with applications to stochastic partial differential equations , 2012, Int. J. Comput. Math..
[6] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[7] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[8] Trond Mannseth,et al. Assessment of multilevel ensemble-based data assimilation for reservoir history matching , 2019, Computational Geosciences.
[9] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[10] Assyr Abdulle,et al. Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs , 2013, Multiscale Model. Simul..
[11] Andrea Barth,et al. Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2013 .
[12] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[13] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[14] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[15] G. Lord,et al. A new class of exponential integrators for SDEs with multiplicative noise , 2019 .
[16] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[17] P. Kloeden,et al. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space–time noise , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[18] Andreas Petersson,et al. Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations , 2018, Math. Comput. Simul..
[19] Neil K. Chada,et al. Multilevel Ensemble Kalman-Bucy Filters , 2020, SIAM/ASA J. Uncertain. Quantification.
[20] Robert Scheichl,et al. Multilevel Markov Chain Monte Carlo , 2019, SIAM Rev..
[21] Yan Zhou,et al. Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..
[22] Andrew J. Majda,et al. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows , 2006 .
[23] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[24] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .
[25] C. Reisinger,et al. Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..
[26] Fabio Nobile,et al. Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.
[27] Helmut Harbrecht,et al. On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations , 2012 .
[28] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[29] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[30] Kody J. H. Law,et al. MULTI-INDEX SEQUENTIAL MONTE CARLO METHODS FOR PARTIALLY OBSERVED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2018, International Journal for Uncertainty Quantification.
[31] G. Karniadakis,et al. Numerical Methods for Stochastic Partial Differential Equations with White Noise , 2018 .
[32] Timothy G. Feeman,et al. The Mathematics of Medical Imaging: A Beginner's Guide , 2009, The Journal of Nuclear Medicine.
[33] Tony Shardlow,et al. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[34] Li Liu,et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges , 2020, Inf. Fusion.