neuronsexcitability and plasticity in CA1 pyramidal Development of dendritic tonic GABAergic inhibition

[1]  K. Keinänen,et al.  Developmental switch in the kinase dependency of long-term potentiation depends on expression of GluA4 subunit-containing AMPA receptors , 2014, Proceedings of the National Academy of Sciences.

[2]  C. Lohmann,et al.  The developmental stages of synaptic plasticity , 2014, The Journal of physiology.

[3]  M. Mynlieff,et al.  Levels of CaV1.2 L-Type Ca2+ Channels Peak in the First Two Weeks in Rat Hippocampus Whereas CaV1.3 Channels Steadily Increase through Development , 2012, Journal of signal transduction.

[4]  S. Bao,et al.  Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. , 2012, Journal of neurophysiology.

[5]  D. Feldman The Spike-Timing Dependence of Plasticity , 2012, Neuron.

[6]  Doyun Lee,et al.  Hippocampal Place Fields Emerge upon Single-Cell Manipulation of Excitability During Behavior , 2012, Science.

[7]  David C. Sterratt,et al.  Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy , 2012, PLoS Comput. Biol..

[8]  D. Hoffman,et al.  Differential cycling rates of Kv4.2 channels in proximal and distal dendrites of hippocampal CA1 pyramidal neurons , 2012, Hippocampus.

[9]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[10]  D. Hoffman,et al.  Aberrant Dendritic Excitability: A Common Pathophysiology in CNS Disorders Affecting Memory? , 2012, Molecular Neurobiology.

[11]  W. N. Ross Understanding calcium waves and sparks in central neurons , 2012, Nature Reviews Neuroscience.

[12]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[13]  I. Módy,et al.  Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease , 2012, Neuron.

[14]  M. Palkovits,et al.  Astrocytes convert network excitation to tonic inhibition of neurons , 2012, BMC Biology.

[15]  W. Armstrong,et al.  Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons. , 2011, Journal of neurophysiology.

[16]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[17]  W. Kaufmann,et al.  Defective GABAergic Neurotransmission and Pharmacological Rescue of Neuronal Hyperexcitability in the Amygdala in a Mouse Model of Fragile X Syndrome , 2010, The Journal of Neuroscience.

[18]  Ronald A. J. van Elburg,et al.  Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells , 2010, PLoS Comput. Biol..

[19]  Loren J. Martin,et al.  α5GABAA Receptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory , 2010, Journal of Neuroscience.

[20]  A. Fenton,et al.  A Critical Role for α4βδ GABAA Receptors in Shaping Learning Deficits at Puberty in Mice , 2010, Science.

[21]  D. Bayliss,et al.  Homeostatic Regulation of Synaptic Excitability: Tonic GABAA Receptor Currents Replace I h in Cortical Pyramidal Neurons of HCN1 Knock-Out Mice , 2010, The Journal of Neuroscience.

[22]  J. White,et al.  Gain Control in CA1 Pyramidal Cells Using Changes in Somatic Conductance , 2010, The Journal of Neuroscience.

[23]  D. Kullmann,et al.  Outwardly Rectifying Tonically Active GABAA Receptors in Pyramidal Cells Modulate Neuronal Offset, Not Gain , 2009, The Journal of Neuroscience.

[24]  Matthew C. Walker,et al.  Extrasynaptic GABAA Receptors: Form, Pharmacology, and Function , 2009, The Journal of Neuroscience.

[25]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[26]  J. Kwag,et al.  Bidirectional control of spike timing by GABAA receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons , 2009, Neuroreport.

[27]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[28]  R. Olsen,et al.  GABAA receptors: Subtypes provide diversity of function and pharmacology , 2009, Neuropharmacology.

[29]  Judit K. Makara,et al.  Altered synaptic and non‐synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice , 2008, The Journal of physiology.

[30]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[31]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[32]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[33]  Edward O. Mann,et al.  Which GABAA Receptor Subunits Are Necessary for Tonic Inhibition in the Hippocampus? , 2008, The Journal of Neuroscience.

[34]  Emilie Campanac,et al.  Spike timing‐dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons , 2008, The Journal of physiology.

[35]  J. Mellor,et al.  The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones , 2007, The Journal of physiology.

[36]  Johannes J. Letzkus,et al.  Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity , 2007, Trends in Neurosciences.

[37]  I. Módy,et al.  The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus , 2007, The Journal of physiology.

[38]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[39]  Huibert D. Mansvelder,et al.  Increased Threshold for Spike-Timing-Dependent Plasticity Is Caused by Unreliable Calcium Signaling in Mice Lacking Fragile X Gene Fmr1 , 2007, Neuron.

[40]  Attila Losonczy,et al.  Associative pairing enhances action potential back‐propagation in radial oblique branches of CA1 pyramidal neurons , 2007, The Journal of physiology.

[41]  A. Triller,et al.  The development of hippocampal interneurons in rodents , 2006, Hippocampus.

[42]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[43]  L Stan Leung,et al.  GABAB receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo , 2006, Hippocampus.

[44]  Giorgio A Ascoli,et al.  Signal propagation in oblique dendrites of CA1 pyramidal cells. , 2005, Journal of neurophysiology.

[45]  D. Kullmann,et al.  Multiple and Plastic Receptors Mediate Tonic GABAA Receptor Currents in the Hippocampus , 2005, The Journal of Neuroscience.

[46]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[47]  I. Módy Aspects of the homeostaic plasticity of GABAA receptor‐mediated inhibition , 2005, The Journal of physiology.

[48]  J. F. López-Téllez,et al.  Expression of α5 GABAA receptor subunit in developing rat hippocampus , 2004 .

[49]  G. Collingridge,et al.  Multiple, Developmentally Regulated Expression Mechanisms of Long-Term Potentiation at CA1 Synapses , 2004, The Journal of Neuroscience.

[50]  B. Hutcheon,et al.  Organization of GABAA receptor α‐subunit clustering in the developing rat neocortex and hippocampus , 2004, The European journal of neuroscience.

[51]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[52]  B. Orser,et al.  Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors , 2004 .

[53]  Zhong-Wei Zhang,et al.  Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. , 2004, Journal of neurophysiology.

[54]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[55]  O. Paulsen,et al.  Maturation of Long-Term Potentiation Induction Rules in Rodent Hippocampus: Role of GABAergic Inhibition , 2003, The Journal of Neuroscience.

[56]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[57]  Alison L. Barth,et al.  A developmental switch in the signaling cascades for LTP induction , 2003, Nature Neuroscience.

[58]  R. Pearce,et al.  Development of GABA(A) receptor-mediated inhibitory postsynaptic currents in hippocampus. , 2002, Journal of neurophysiology.

[59]  D. Vasilyev,et al.  Postnatal Development of the Hyperpolarization-Activated Excitatory Current Ih in Mouse Hippocampal Pyramidal Neurons , 2002, The Journal of Neuroscience.

[60]  I. Módy,et al.    Receptors with Different Affinities Mediate Phasic and Tonic GABAA Conductances in Hippocampal Neurons , 2002, The Journal of Neuroscience.

[61]  J. Fritschy,et al.  Intact sorting, targeting, and clustering of γ‐aminobutyric acid A receptor subtypes in hippocampal neurons in vitro , 2002, The Journal of comparative neurology.

[62]  C. Sotelo,et al.  Postnatal maturation of Na+, K+, 2Cl– cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis , 2002, The European journal of neuroscience.

[63]  Yves Gioanni,et al.  Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: an in vivo intracellular recording study. , 2002, Cerebral cortex.

[64]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[65]  M. Biel,et al.  Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1–4 suggests evolving roles in the developing rat hippocampus , 2001, Neuroscience.

[66]  J. B. Levitt,et al.  Inhibitory synapse cover on the somata of excitatory neurons in macaque monkey visual cortex. , 2001, Cerebral cortex.

[67]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[68]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[69]  D. Coulter,et al.  Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons. , 2000, Journal of neurophysiology.

[70]  O. Paulsen,et al.  Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. , 1999, The Journal of physiology.

[71]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[72]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[73]  C. Radici,et al.  Postnatal differentiation of firing properties and morphological characteristics in layer V pyramidal neurons of the sensorimotor cortex , 1998, Neuroscience.

[74]  L. Mills,et al.  N-Type Calcium Channels in the Developing Rat Hippocampus: Subunit, Complex, and Regional Expression , 1997, The Journal of Neuroscience.

[75]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[76]  G. Sperk,et al.  GABAA receptor subunits in the rat hippocampus I: Immunocytochemical distribution of 13 subunits , 1997, Neuroscience.

[77]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[78]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[79]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  M. Kossut,et al.  Development of NMDA receptor‐channel complex and L‐type calcium channels in mouse hippocampus , 1993, Journal of neuroscience research.