What Shape Is Your Conjugate? A Survey of Computational Convex Analysis and Its Applications

Computational convex analysis algorithms have been rediscovered several times in the past by researchers from different fields. To further communications between practitioners, we review the field of computational convex analysis, which focuses on the numerical computation of fundamental transforms arising from convex analysis. Current models use symbolic, numeric, and hybrid symbolic-numeric algorithms. Our objective is to disseminate widely the most efficient numerical algorithms useful for applications in image processing (computing the distance transform, the generalized distance transform, and mathematical morphology operators), partial differential equations (solving Hamilton-Jacobi equations and using differential equations numerical schemes to compute the convex envelope), max-plus algebra (computing the equivalent of the fast Fourier transform), multifractal analysis, etc. The fields of applications include, among others, computer vision, robot navigation, thermodynamics, electrical networks, medical imaging, and network communication.

[1]  P. Del Moral,et al.  Maslov Idempotent Probability Calculus, I , 1999 .

[2]  T. D Morley Parallel summation, Maxwell's principle and the infimum of projections , 1979 .

[3]  R. Tyrrell Rockafellar,et al.  Generalized Hessian Properties of Regularized Nonsmooth Functions , 1996, SIAM J. Optim..

[4]  F. Kadhi,et al.  Characterization and Approximation of the Convex Envelope of a Function , 2001 .

[5]  France.,et al.  The decay of multiscale signals — a deterministic model of Burgers turbulence , 2000, physics/0002043.

[6]  Yves Lucet,et al.  Fast Moreau envelope computation I: numerical algorithms , 2007, Numerical Algorithms.

[7]  Richard G. Baraniuk,et al.  A Multifractal Wavelet Model with Application to Network Traffic , 1999, IEEE Trans. Inf. Theory.

[8]  Wim H. Hesselink A linear-time algorithm for Euclidean feature transform sets , 2007, Inf. Process. Lett..

[9]  Klaus J. Kirchberg,et al.  Robust Face Detection Using the Hausdorff Distance , 2001, AVBPA.

[10]  Hans-Christian Hege,et al.  Fast visualization of plane-like structures in voxel data , 2002, IEEE Visualization, 2002. VIS 2002..

[11]  Jean-Yves Le Boudec,et al.  Network Calculus , 2001, Lecture Notes in Computer Science.

[12]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[13]  La soustraction parallèle d’operateurs Interprétée comme déconvolution de formes quadratiques convexes , 1987 .

[14]  Leo Dorst,et al.  Morphological signal processing and the slope transform , 1994, Signal Process..

[15]  Luciano da Fontoura Costa,et al.  2D Euclidean distance transform algorithms: A comparative survey , 2008, CSUR.

[16]  Richard Bellman,et al.  Functional equations in the theory of dynamic programming XVII: Policies dependent on critical state variables , 1971 .

[17]  Cyril Imbert,et al.  Convex Analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations , 2001 .

[18]  A. Ramm,et al.  Singularities of the radon transform , 1993, The RADON TRANSFORM and LOCAL TOMOGRAPHY.

[19]  Selfdual Variational Principles for Periodic Solutions of Hamiltonian and Other Dynamical Systems , 2005, math/0509502.

[20]  Heinz H. Bauschke,et al.  How to Transform One Convex Function Continuously into Another , 2008, SIAM Rev..

[21]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[22]  Peter Sussner,et al.  An introduction to morphological neural networks , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  E. Aurell,et al.  Numerical Proof of Self-Similarity in Burgers' Turbulence , 1996, patt-sol/9602005.

[24]  C. Lemaréchal,et al.  Growth Conditions and U-Lagrangians , 2001 .

[25]  L. Thibault,et al.  Uniform prox-regularity of functions and epigraphs in Hilbert spaces , 2005 .

[26]  R. Mifflin,et al.  Functions with Primal-Dual Gradient Structure and u-Hessians , 2000 .

[27]  Jennifer L. Davidson,et al.  Morphology neural networks: An introduction with applications , 1993 .

[28]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[29]  Kensaku Mori,et al.  Distance Transformation and Skeletonization of 3D Pictures and Their Applications to Medical Images , 2000, Digital and Image Geometry.

[30]  Pierre Del Moral,et al.  Maslov idempotent probability calculus. II@@@Maslov idempotent probability calculus. II , 1999 .

[31]  L. Thibault,et al.  Prox-Regularity of Functions and Sets in Banach Spaces , 2004 .

[32]  J. Quadrat,et al.  Supported by the Austrian Federal Ministry of Education, Science and CultureMAX-PLUS CONVEX SETS AND FUNCTIONS , 2022 .

[33]  Antisymmetric Hamiltonians: Variational resolutions for Navier‐Stokes and other nonlinear evolutions , 2007 .

[34]  R Bellman,et al.  Some Functional Equations in the Theory of Dynamic Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Hiriart-Urruty,et al.  Parametric computation of the Legendre-Fenchel conjugate with application to the computation of the Moreau envelope , 2007 .

[36]  Stephan Recker,et al.  Conjugate network calculus: A dual approach applying the Legendre transform , 2006, Comput. Networks.

[37]  Alexander Zelinsky,et al.  A Navigation Algorithm For Industrial Mobile Robots , 1992, IEEE International Workshop on Emerging Technologies and Factory Automation,.

[38]  Ray A. Jarvis,et al.  A fast algorithm to plan a collision-free path in cluttered 2D environments , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[39]  Wilton R. Abbott,et al.  Network Calculus , 1970 .

[40]  W. McEneaney Combining Legendre/Fenchel transformed operators on max-plus spaces for nonlinear control solution , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[41]  R. Ellaia,et al.  The conjugate of the difference of convex functions , 1986 .

[42]  Ray Jarvis,et al.  Distance transform based visibility measures for covert path planning in known but dynamic environments , 2004 .

[43]  B. Legras,et al.  Variability of the Lagrangian turbulent diffusion in the lower stratosphere , 2004 .

[44]  Yves Lucet,et al.  Faster than the Fast Legendre Transform, the Linear-time Legendre Transform , 1997, Numerical Algorithms.

[45]  A generalization of parallel addition , 1989 .

[46]  R. Wets,et al.  A convergence theory for saddle functions , 1983 .

[47]  Heinz H. Bauschke,et al.  The piecewise linear-quadratic model for computational convex analysis , 2009, Comput. Optim. Appl..

[48]  Robert Mifflin,et al.  𝒱𝒰-smoothness and proximal point results for some nonconvex functions , 2004, Optim. Methods Softw..

[49]  M. Planitz,et al.  Analysis, algebra, and computers in mathematical research , 1995 .

[50]  L. Deniau Fractal analysis with Hausdorff Distance under Affine Transformations , 1995 .

[51]  Ray A. Jarvis,et al.  Real time obstacle detection and navigation planning for a humanoid robot in an indoor environment , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[52]  Equations inf-convolutives et conjugaison de Moreau Fenchel , 1991 .

[53]  M. mazure Equations de convolution et formes quadratiques , 1991 .

[54]  R. A. Jarvis,et al.  Collision-free trajectory planning using distance transforms , 1985 .

[55]  Pablo A. Lotito,et al.  Traffic Assignment and Gibbs-Maslov Semirings , 2003 .

[56]  Stanley Letovsky,et al.  Predicting protein function from protein/protein interaction data: a probabilistic approach , 2003, ISMB.

[57]  Robert Mifflin,et al.  Primal-Dual Gradient Structured Functions: Second-Order Results; Links to Epi-Derivatives and Partly Smooth Functions , 2003, SIAM J. Optim..

[58]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[59]  L. Vese A method to convexify functions via curve evolution , 1999 .

[60]  N. Vincent,et al.  A method for detecting objects using Legendre transform , 2002 .

[61]  Georg Dolzmann,et al.  Numerical Computation of Rank-One Convex Envelopes , 1999 .

[62]  Ray A. Jarvis,et al.  Covert Robotics: hiding in known environments , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[63]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[64]  Henk J. A. M. Heijmans,et al.  Morphological Scale-Space Operators: An Algebraic Framework , 2000, ISMM.

[65]  Ray Jarvis An articulated six wheel drive robot for very rough terrain navigation , 2002 .

[66]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[67]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[68]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[69]  J. Golan Semirings and their applications , 1999 .

[70]  Stéphane Gaubert,et al.  Projection and Aggregation in Maxplus Algebra , 2006 .

[71]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[72]  M. Mazure Shorted operators through convex analysis , 1988 .

[73]  R. Mi,et al.  Relating U-Lagrangians to Second-order Epi-derivatives and Proximal-tracks , 2005 .

[74]  T. Andô,et al.  Means of positive linear operators , 1980 .

[75]  Jessica L. Hamblen,et al.  Guide to the literature , 1975 .

[76]  Robert Mifflin,et al.  On VU-theory for Functions with Primal-Dual Gradient Structure , 2000, SIAM J. Optim..

[77]  R. Bellman,et al.  Mathematical Programming and the Maximum Transform , 1962 .

[78]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[79]  Ioannis Pitas,et al.  A fast implementation of 3-D binary morphological transformations , 2000, IEEE Trans. Image Process..

[80]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[81]  François Baccelli,et al.  TCP is max-plus linear and what it tells us on its throughput , 2000 .

[82]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .

[83]  J. Penot Proximal Mappings , 1998 .

[84]  A. Hamdi A MOREAU-YOSIDA REGULARIZATION OF A DIFFERENCE OF TWO CONVEX FUNCTIONS ∗ , 2005 .

[85]  R. Mifflin,et al.  VU -Decomposition Derivatives for Convex Max-Functions , 1999 .

[86]  Ryan M. Rifkin,et al.  Value Regularization and Fenchel Duality , 2007, J. Mach. Learn. Res..

[87]  J. Hiriart-Urruty Lipschitz $r$-continuity of the approximative subdifferential of a convex function. , 1980 .

[88]  A. Noullez,et al.  A fast Legendre transform algorithm and applications to the adhesion model , 1994 .

[89]  Y. Brenier Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes , 1989 .

[90]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[91]  Henk J. A. M. Heijmans,et al.  Morphology on Convolution Lattices with Applications to the Slope Transform and Random Set Theory , 2004, Journal of Mathematical Imaging and Vision.

[92]  S. Mitra,et al.  The Regular Shorted Matrix and the Hybrid Sum , 1997 .

[93]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[94]  Pangan Ting,et al.  A novel broadcast scheduling strategy using factor graphs and the sum-product algorithm , 2004, IEEE Transactions on Wireless Communications.

[95]  Stable Calculation of the Legendre Transform , 1993 .

[96]  Pablo A. Lotito,et al.  A min-plus derivation of the fundamental car-traffic law , 2005, IEEE Transactions on Automatic Control.

[97]  Alexander Zelinsky,et al.  A mobile robot exploration algorithm , 1992, IEEE Trans. Robotics Autom..

[98]  Marina L. Gavrilova,et al.  Two Algorithms for Computing the Euclidean Distance Transform , 2001, Int. J. Image Graph..

[99]  Jiusun Zeng,et al.  Identification of Multi-fractal Characteristics of Silicon Content in Blast Furnace Hot Metal , 2007 .

[100]  Yves Lucet New sequential exact Euclidean distance transform algorithms based on convex analysis , 2009, Image Vis. Comput..

[101]  Ray A. Jarvis,et al.  Collision-Free Path Planning in Time-Varying Environments , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[102]  P. Danielsson Euclidean distance mapping , 1980 .

[103]  E. Aurell,et al.  The inviscid Burgers equation with initial data of Brownian type , 1992 .

[104]  Olivier Devillers,et al.  Incremental Algorithms for Finding the Convex Hulls of Circles and the Lower Envelopes of Parabolas , 1995, Inf. Process. Lett..

[105]  J. Penot,et al.  On the Yosida approximation of operators , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[106]  Characterization of parallel subtraction. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Cengizhan Ozturk,et al.  Multidimensional Alignment Using the Euclidean Distance Transform , 1997, CVGIP Graph. Model. Image Process..

[108]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[109]  P. Maragos PDEs for Morphological Scale-Spaces and Eikonal Applications , 2004 .

[110]  Petros Maragos,et al.  Morphological systems: Slope transforms and max-min difference and differential equations , 1994, Signal Process..

[111]  Ray A. Jarvis,et al.  DISTANCE TRANSFORM BASED PATH PLANNING FOR ROBOT NAVIGATION , 1994 .

[112]  Zvi Shiller,et al.  Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation , 1994, IEEE Trans. Robotics Autom..

[113]  Laure Tougne,et al.  Two-Dimensional Discrete Morphing , 2004, IWCIA.

[114]  U. Frisch,et al.  Kicked Burgers turbulence , 1999, Journal of Fluid Mechanics.

[115]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[116]  W. Anderson,et al.  Inequalities for the parallel connection of resistive n-port networks , 1975 .

[117]  J. Moreau Convexity and duality , 1966 .

[118]  H. Attouch,et al.  Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method , 1993 .

[119]  R. Bellman,et al.  On a new functional transform in analysis: The maximum transform , 1961 .

[120]  Heinz H. Bauschke,et al.  The kernel average for two convex functions and its application to the extension and representation of monotone operators , 2009 .

[121]  Michael Trienis,et al.  Computational convex analysis : from continuous deformation to finite convex integration , 2007 .

[122]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[123]  Paul Tseng,et al.  On Computing the Nested Sums and Infimal Convolutions of Convex Piecewise-Linear Functions , 1996, J. Algorithms.

[124]  Defeng Sun,et al.  Properties of the Moreau-Yosida regularization of a piecewise C2 convex function , 1999, Math. Program..

[125]  P. Sabatier,et al.  Self Dual Operators on Convex Functionals Geometric Mean and Square Root of Convex Functionals , 2001 .

[126]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[127]  Rafal Goebel,et al.  Self-dual smoothing of convex and saddle functions , 2007 .

[128]  PARALLEL ADDITION AND PARALLEL SUBTRACTION OF OPERATORS , 1976 .

[129]  Frank Y. Shih,et al.  Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood , 2004, Comput. Vis. Image Underst..

[130]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[131]  T. Morin,et al.  Conjugate duality and the curse of dimensionality , 1991 .

[132]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[133]  R. Duffin,et al.  Series and parallel addition of matrices , 1969 .

[134]  M. mazure L'addition parallèle d'opérateurs interprétée comme inf-convolution de formes quadratiques convexes , 1986 .

[135]  Heinz H. Bauschke,et al.  Primal-Dual Symmetric Intrinsic Methods for Finding Antiderivatives of Cyclically Monotone Operators , 2007, SIAM J. Control. Optim..

[136]  Y. LUCET,et al.  A fast computational algorithm for the Legendre-Fenchel transform , 1996, Comput. Optim. Appl..

[137]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[138]  Anti-symmetric Hamiltonians (II) : Variational resolutions for Navier-Stokes and other nonlinear evolutions , 2007, math/0702339.

[139]  Marc Van Droogenbroeck,et al.  Fast computation of morphological operations with arbitrary structuring elements , 1996, Pattern Recognit. Lett..

[140]  Thomas Strömberg The operation of infimal convolution , 1996 .

[141]  Lee Luan Ling,et al.  A novel network traffic predictor based on multifractal traffic characteristic , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[142]  Yves Lucet,et al.  Convexity of the Proximal Average , 2011, J. Optim. Theory Appl..

[143]  Van Hien Nguyen,et al.  Finite Convex Integration , 2004 .

[144]  W. Karush A General Algorithm for the Optimal Distribution of Effort , 1962 .

[145]  E. Barron,et al.  Explicit solution of some first-order PDE's , 1997 .

[146]  Petros Maragos,et al.  Differential morphology , 2000 .

[147]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..

[148]  Bilateral Shorted Operators and Parallel Sums , 2005, math/0509327.

[149]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[150]  Rudolf H. Riedi,et al.  Multifractal Properties of TCP Traffic: a Numerical Study , 1997 .

[151]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[152]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[153]  G. Litvinov Maslov dequantization, idempotent and tropical mathematics: A brief introduction , 2005, math/0507014.

[154]  Gleb Beliakov,et al.  A Review of Applications of the Cutting Angle Methods , 2005 .

[155]  Soille Pierre,et al.  Mathematical Morphology and Its Applications to Image and Signal Processing , 2011, Lecture Notes in Computer Science.

[156]  C. Villani Optimal Transport: Old and New , 2008 .

[157]  Jonathan S. Golan,et al.  Power Algebras over Semirings: With Applications in Mathematics and Computer Science , 2010 .

[158]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[159]  E. Aurell,et al.  Global picture of self-similar and non-self-similar decay in Burgers turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[160]  T. Stephenson Image analysis , 1992, Nature.

[161]  Heinz H. Bauschke,et al.  Symbolic computation of Fenchel conjugates , 2006, ACCA.

[162]  L. Thibault,et al.  Prox-regular functions in Hilbert spaces , 2005 .

[163]  Daniel P. Huttenlocher,et al.  Object Recognition by Combining Appearance and Geometry , 2006, Toward Category-Level Object Recognition.

[164]  F. Meng,et al.  On Second-Order Properties of the Moreau–Yosida Regularization for Constrained Nonsmooth Convex Programs , 2004 .

[165]  Gunilla Borgefors,et al.  Distance transformations on hexagonal grids , 1989, Pattern Recognit. Lett..

[166]  Bernardo Llanas,et al.  Efficient Computation of the Hausdorff Distance Between Polytopes by Exterior Random Covering , 2005, Comput. Optim. Appl..

[167]  Édouard Oudet,et al.  Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..

[168]  Quantifying the Effects of Atmospheric Stability on the Multifractal Spectrum of Turbulence , 2004 .

[169]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[170]  F. Kubo Conditional expectations and operations derived from network connections , 1981 .

[171]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[172]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[173]  J. Golan SOME RECENT APPLICATIONS OF SEMIRING THEORY , 2005 .

[174]  Biplab Sikdar,et al.  A multiplicative multifractal model for TCP traffic , 2001, Proceedings. Sixth IEEE Symposium on Computers and Communications.

[175]  U. Frisch,et al.  Singularities and the distribution of density in the Burgers/adhesion model , 1999, cond-mat/9912110.

[176]  J. Mathias,et al.  Program , 1970, Symposium on VLSI Technology.

[177]  Robert Mifflin,et al.  On the relation between u-Hessians and second-order epi-derivatives , 2004, Eur. J. Oper. Res..

[178]  J. -B. Hiriart-Urruty,et al.  The deconvolution operation in convex analysis: An introduction , 1994 .

[179]  N. Ghoussoub A theory of anti-selfdual Lagrangians: stationary case , 2005 .

[180]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[181]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[182]  Ray A. Jarvis,et al.  A path planning heuristic for robotic manipulators , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[183]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[184]  Fernand S. Cohen,et al.  3-D face structure extraction and recognition from images using 3-D morphing and distance mapping , 2002, IEEE Trans. Image Process..

[185]  J. Hiriart-Urruty Extension of Lipschitz functions , 1980 .

[186]  R. E. Marsten,et al.  An Algorithm for Nonlinear Knapsack Problems , 1976 .

[187]  K. Glazek,et al.  A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences: With Complete Bibliography , 2002 .

[188]  Pablo Pedregal,et al.  An alternative approach for non-linear optimal control problems based on the method of moments , 2007, Comput. Optim. Appl..

[189]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[190]  Petros Maragos,et al.  Differential morphology and image processing , 1996, IEEE Trans. Image Process..

[191]  C. Klein Conjugate duality and its implications in dynamic programming , 1990 .

[192]  Robert Mifflin,et al.  A -algorithm for convex minimization , 2005, Math. Program..

[193]  X-Ray Transform, the Legendre Transform, and Envelopes , 1994 .

[194]  Luc Vincent,et al.  Morphological transformations of binary images with arbitrary structuring elements , 1991, Signal Process..

[195]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[196]  Franck Lefèvre,et al.  Vertical diffusivity in the lower stratosphere from Lagrangian back‐trajectory reconstructions of ozone profiles , 2003 .

[197]  M. M. Novak,et al.  Fractal and topological dynamics for the analysis of paleoclimatic records , 2007 .

[198]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[199]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[200]  Patrick L. Combettes,et al.  A forward-backward algorithm for image restoration with sparse representations , 2005 .

[201]  Jean-Yves Le Boudec,et al.  Network Calculus: A Theory of Deterministic Queuing Systems for the Internet , 2001 .

[202]  K. I. M. McKinnon,et al.  A Generic Global Optimization Algorithm for the Chemical and Phase Equilibrium Problem , 1998, J. Glob. Optim..

[203]  James V. Burke,et al.  On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating , 2000, Math. Program..

[204]  Yves Lucet A linear Euclidean distance transform algorithm based on the linear-time Legendre transform , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[205]  Joachim Weickert,et al.  An Explanation for the Logarithmic Connection between Linear and Morphological System Theory , 2005, International Journal of Computer Vision.

[206]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[207]  J. Penot,et al.  Towards minimal assumptions for the infimal convolution regularization , 1991 .

[208]  Jonathan S. Golan,et al.  Power algebras over semirings , 1999 .

[209]  Y. Lucet The Legendre--Fenchel Conjugate: Numerical Computation , 1998 .

[210]  Yves Lucet,et al.  Convex Hull Algorithms for Piecewise Linear-Quadratic Functions in Computational Convex Analysis , 2010 .

[211]  James Allen Fill,et al.  The Moore-Penrose Generalized Inverse for Sums of Matrices , 1999, SIAM J. Matrix Anal. Appl..

[212]  Mark S. K. Lau,et al.  A Smoothing Method of Global Optimization that Preserves Global Minima , 2006, J. Glob. Optim..

[213]  S. Aji,et al.  The Generalized Distributive Law and Free Energy Minimization , 2001 .

[214]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[215]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[216]  C. Lemaréchal,et al.  THE U -LAGRANGIAN OF A CONVEX FUNCTION , 1996 .

[217]  Ljiljana Trajkovic,et al.  Characterization of a simple communication network using Legendre transform , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[218]  Alexander Zelinsky,et al.  Using Path Transforms to Guide the Search for Findpath in 2D , 1994, Int. J. Robotics Res..

[219]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[220]  M. Bardi,et al.  Hopf-type estimates and formulas for nonconvex nonconcave Hamilton-Jacobi equations , 1998 .

[221]  Adam M. Oberman COMPUTING THE CONVEX ENVELOPE USING A NONLINEAR PARTIAL DIFFERENTIAL EQUATION , 2008 .

[222]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[223]  Ron Kimmel,et al.  Efficient Dilation, Erosion, Opening and Closing Algorithms , 2000, ISMM.

[224]  Dongming Lu,et al.  The Multi-fractal Nature of Worm and Normal Traffic at Individual Source Level , 2005, ISI.

[225]  B. Brighi,et al.  Approximated convex envelope of a function , 1994 .

[226]  Kenneth R. Driessel,et al.  Zero-preserving iso-spectral flows based on parallel sums , 2006, math/0605243.

[227]  Sequential product of quantum effects , 2003 .

[228]  Alexander G. Ramm,et al.  Reconstructing singularities of a function from its Radon transform , 1993 .

[229]  J. Quadrat,et al.  BELLMAN PROCESSES , 1994 .

[230]  Defeng Sun,et al.  Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization , 2005, Math. Program..

[231]  Michel Théra,et al.  Enlargements and Sums of Monotone Operators , 2001 .

[232]  Jeremy Gunawardena,et al.  Idempotency: An introduction to idempotency , 1998 .

[233]  R. Tyrrell Rockafellar,et al.  Convexity in Hamilton-Jacobi Theory II: Envelope Representations , 2000, SIAM J. Control. Optim..

[234]  P. Rabier,et al.  Generic aspects of convexification with applications to thermodynamic equilibrium , 1992 .

[235]  Hui Wang,et al.  Vision Guided AGV Using Distance Transform , 2001 .

[236]  M. Falcone,et al.  Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods , 2002 .

[237]  R. Bellman,et al.  Functional equations in the theory of dynamic programming XII: An application of the maximum transform , 1963 .

[238]  R. A. Jarvis,et al.  Robot manipulator path planning , 1992, TENCON'92 - Technology Enabling Tomorrow.

[239]  R. Bellman,et al.  On the maximum transform , 1963 .

[240]  Petros Maragos,et al.  Lattice calculus of the morphological slope transform , 1997, Signal Process..

[241]  Jorge Villalobos,et al.  Analysis of microstructures and phase transition phenomena in one-dimensional, non-linear elasticity by convex optimization , 2006 .

[242]  Adam M. Oberman The convex envelope is the solution of a nonlinear obstacle problem , 2007 .

[243]  C. Sagastizábal,et al.  Benchmark of Some Nonsmooth Optimization Solvers for Computing Nonconvex Proximal Points , 2006 .

[244]  J. Roerdink,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 1998 .

[245]  Petros Maragos,et al.  Curve Evolution, Differential Morphology, and Distance Transforms Applied to Multiscale and Eikonal Problems , 2000, Fundam. Informaticae.

[246]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[247]  L. Corrias Fast Legendre--Fenchel Transform and Applications to Hamilton--Jacobi Equations and Conservation Laws , 1996 .

[248]  Yongge Tian How to Express a Parallel Sum of k Matrices , 2002 .

[249]  Jean-Pierre Quadrat,et al.  Idempotency: Duality between probability and optimization , 1998 .

[250]  C. Lemaréchal,et al.  More Than First-Order Developments of Convex Functions: Primal-Dual Relations , .

[251]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[252]  Jeremy Gunawardena,et al.  From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems , 2003, Theor. Comput. Sci..

[253]  B. Carré An Algebra for Network Routing Problems , 1971 .

[254]  Heinz H. Bauschke,et al.  Joint minimization with alternating Bregman proximity operators , 2005 .

[255]  Alexander V. Tuzikov,et al.  Convex Set Symmetry Measurement via Minkowski Addition , 2004, Journal of Mathematical Imaging and Vision.

[256]  Sirkka-liisa Eriksson-bique,et al.  Minimal operators from a potential-theoretic viewpoint , 1994 .

[257]  Jonathan M. Borwein,et al.  Symbolic Fenchel Conjugation , 2008, Math. Program..

[258]  Petros Maragos Slope transforms: theory and application to nonlinear signal processing , 1995, IEEE Trans. Signal Process..

[259]  Ling Chen,et al.  A Fast Algorithm for Euclidean Distance Maps of a 2-D Binary Image , 1994, Inf. Process. Lett..

[260]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[261]  E. Aurell,et al.  On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.

[262]  S. Osher,et al.  Total variation and level set methods in image science , 2005, Acta Numerica.