The Mixed Discontinuous Galerkin Method for Transmission Eigenvalues for Anisotropic Medium

[1]  Yidu Yang,et al.  The Finite Element Method for the Elastic Transmission Eigenvalue Problem with Different Elastic Tensors , 2022, Journal of Scientific Computing.

[2]  Liquan Mei,et al.  Virtual Element Method for the Helmholtz Transmission Eigenvalue Problem of Anisotropic Media , 2022, Mathematical Models and Methods in Applied Sciences.

[3]  Drossos Gintides,et al.  On the modified transmission eigenvalue problem with an artificial metamaterial background , 2021, Research in the Mathematical Sciences.

[4]  Tom Gustafsson,et al.  scikit-fem: A Python package for finite element assembly , 2020, J. Open Source Softw..

[5]  Felipe Lepe,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for a Pseudostress Formulation of the Stokes Spectral Problem , 2020, SIAM J. Sci. Comput..

[6]  Yu Zhang,et al.  A type of adaptive C0 non-conforming finite element method for the Helmholtz transmission eigenvalue problem , 2020 .

[7]  Liang Wang,et al.  A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems , 2019, Advances in Computational Mathematics.

[8]  Andreas Kleefeld,et al.  Computing interior transmission eigenvalues for homogeneous and anisotropic media , 2018, Inverse Problems.

[9]  Rodolfo Rodríguez,et al.  Convergence of a lowest-order finite element method for the transmission eigenvalue problem , 2018, Calcolo.

[10]  David Mora,et al.  A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.

[11]  A. Kleefeld,et al.  The method of fundamental solutions for computing acoustic interior transmission eigenvalues , 2018 .

[12]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[13]  Fioralba Cakoni,et al.  New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data , 2017 .

[14]  Samuel Cogar,et al.  Modified transmission eigenvalues in inverse scattering theory , 2017 .

[15]  Wen-Wei Lin,et al.  An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues , 2017 .

[16]  Fioralba Cakoni,et al.  Inverse scattering theory and transmission eigenvalues , 2016 .

[17]  Qingsong Zou,et al.  A $C^0$ linear finite element method for two fourth-order eigenvalue problems , 2016 .

[18]  Aihui Zhou,et al.  Finite Element Methods for Eigenvalue Problems , 2016 .

[19]  Hai Bi,et al.  Mixed Methods for the Helmholtz Transmission Eigenvalues , 2016, SIAM J. Sci. Comput..

[20]  Liwei Xu,et al.  A spectral projection method for transmission eigenvalues , 2016, 1605.00727.

[21]  Jiayu Han,et al.  An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues , 2015, 1512.06659.

[22]  Hehu Xie,et al.  A Multilevel Correction Method for Interior Transmission Eigenvalue Problem , 2015, J. Sci. Comput..

[23]  Xia Ji,et al.  C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}IP Methods for the Transmission Eigenvalue Proble , 2015, Journal of Scientific Computing.

[24]  Jie Shen,et al.  Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem , 2015, Comput. Math. Appl..

[25]  Xia Ji,et al.  A multi-level method for transmission eigenvalues of anisotropic media , 2013, J. Comput. Phys..

[26]  Patrick Ciarlet,et al.  T-coercivity: Application to the discretization of Helmholtz-like problems , 2012, Comput. Math. Appl..

[27]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[28]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[29]  Lucas Chesnel,et al.  On the use of T-coercivity to study the interior transmission eigenvalue problem , 2011 .

[30]  Patrick Ciarlet,et al.  Time harmonic wave diffraction problems in materials with sign-shifting coefficients , 2010, J. Comput. Appl. Math..

[31]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[32]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[33]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[34]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[35]  Thirupathi Gudi,et al.  Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2008, J. Sci. Comput..

[36]  Ilaria Perugia,et al.  Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..

[37]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[40]  J. Osborn Spectral approximation for compact operators , 1975 .

[41]  T. Turner,et al.  Finite element/holomorphic operator function method for the transmission eigenvalue problem , 2022, Math. Comput..

[42]  J. Guermond,et al.  Finite Elements I , 2021, Texts in Applied Mathematics.

[43]  Ilaria Perugia,et al.  An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations , 2007 .

[44]  R. Hiptmair,et al.  Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains , 2003 .

[45]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[46]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[47]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .