The Mixed Discontinuous Galerkin Method for Transmission Eigenvalues for Anisotropic Medium
暂无分享,去创建一个
[1] Yidu Yang,et al. The Finite Element Method for the Elastic Transmission Eigenvalue Problem with Different Elastic Tensors , 2022, Journal of Scientific Computing.
[2] Liquan Mei,et al. Virtual Element Method for the Helmholtz Transmission Eigenvalue Problem of Anisotropic Media , 2022, Mathematical Models and Methods in Applied Sciences.
[3] Drossos Gintides,et al. On the modified transmission eigenvalue problem with an artificial metamaterial background , 2021, Research in the Mathematical Sciences.
[4] Tom Gustafsson,et al. scikit-fem: A Python package for finite element assembly , 2020, J. Open Source Softw..
[5] Felipe Lepe,et al. Symmetric and Nonsymmetric Discontinuous Galerkin Methods for a Pseudostress Formulation of the Stokes Spectral Problem , 2020, SIAM J. Sci. Comput..
[6] Yu Zhang,et al. A type of adaptive C0 non-conforming finite element method for the Helmholtz transmission eigenvalue problem , 2020 .
[7] Liang Wang,et al. A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems , 2019, Advances in Computational Mathematics.
[8] Andreas Kleefeld,et al. Computing interior transmission eigenvalues for homogeneous and anisotropic media , 2018, Inverse Problems.
[9] Rodolfo Rodríguez,et al. Convergence of a lowest-order finite element method for the transmission eigenvalue problem , 2018, Calcolo.
[10] David Mora,et al. A virtual element method for the transmission eigenvalue problem , 2018, Mathematical Models and Methods in Applied Sciences.
[11] A. Kleefeld,et al. The method of fundamental solutions for computing acoustic interior transmission eigenvalues , 2018 .
[12] P. Houston,et al. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .
[13] Fioralba Cakoni,et al. New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data , 2017 .
[14] Samuel Cogar,et al. Modified transmission eigenvalues in inverse scattering theory , 2017 .
[15] Wen-Wei Lin,et al. An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues , 2017 .
[16] Fioralba Cakoni,et al. Inverse scattering theory and transmission eigenvalues , 2016 .
[17] Qingsong Zou,et al. A $C^0$ linear finite element method for two fourth-order eigenvalue problems , 2016 .
[18] Aihui Zhou,et al. Finite Element Methods for Eigenvalue Problems , 2016 .
[19] Hai Bi,et al. Mixed Methods for the Helmholtz Transmission Eigenvalues , 2016, SIAM J. Sci. Comput..
[20] Liwei Xu,et al. A spectral projection method for transmission eigenvalues , 2016, 1605.00727.
[21] Jiayu Han,et al. An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues , 2015, 1512.06659.
[22] Hehu Xie,et al. A Multilevel Correction Method for Interior Transmission Eigenvalue Problem , 2015, J. Sci. Comput..
[23] Xia Ji,et al. C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document}IP Methods for the Transmission Eigenvalue Proble , 2015, Journal of Scientific Computing.
[24] Jie Shen,et al. Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem , 2015, Comput. Math. Appl..
[25] Xia Ji,et al. A multi-level method for transmission eigenvalues of anisotropic media , 2013, J. Comput. Phys..
[26] Patrick Ciarlet,et al. T-coercivity: Application to the discretization of Helmholtz-like problems , 2012, Comput. Math. Appl..
[27] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[28] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[29] Lucas Chesnel,et al. On the use of T-coercivity to study the interior transmission eigenvalue problem , 2011 .
[30] Patrick Ciarlet,et al. Time harmonic wave diffraction problems in materials with sign-shifting coefficients , 2010, J. Comput. Appl. Math..
[31] D. Colton,et al. Analytical and computational methods for transmission eigenvalues , 2010 .
[32] Alexandre Ern,et al. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..
[33] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[34] A. Buffa,et al. Compact embeddings of broken Sobolev spaces and applications , 2009 .
[35] Thirupathi Gudi,et al. Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2008, J. Sci. Comput..
[36] Ilaria Perugia,et al. Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..
[37] A. Buffa,et al. Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .
[38] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[39] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[40] J. Osborn. Spectral approximation for compact operators , 1975 .
[41] T. Turner,et al. Finite element/holomorphic operator function method for the transmission eigenvalue problem , 2022, Math. Comput..
[42] J. Guermond,et al. Finite Elements I , 2021, Texts in Applied Mathematics.
[43] Ilaria Perugia,et al. An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations , 2007 .
[44] R. Hiptmair,et al. Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains , 2003 .
[45] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[46] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[47] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .