Structural analysis of the P132L disease mutation in caveolin-1 reveals its role in assembly of oligomeric complexes.

[1]  V. Haucke,et al.  The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane , 2022, Nature Communications.

[2]  R. Parton,et al.  Proteostatic regulation of caveolins avoids premature oligomerisation and preserves ER homeostasis , 2022, bioRxiv.

[3]  J. Porta,et al.  Molecular architecture of the human caveolin-1 complex , 2022, bioRxiv.

[4]  C. Lamaze,et al.  Caveolae promote successful abscission by controlling intercellular bridge tension during cytokinesis , 2022, bioRxiv.

[5]  C. Vigouroux,et al.  Biallelic CAV1 null variants induce Congenital Generalized Lipodystrophy with achalasia. , 2021, European journal of endocrinology.

[6]  R. Mathew Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension , 2021, Medical sciences.

[7]  R. Parton,et al.  Key phases in the formation of caveolae. , 2021, Current opinion in cell biology.

[8]  Justin W. Taraska,et al.  Energy and Dynamics of Caveolae Trafficking , 2021, Frontiers in Cell and Developmental Biology.

[9]  T. Prószyński,et al.  A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies , 2020, International journal of molecular sciences.

[10]  N. Wray,et al.  Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene , 2020, Cell reports.

[11]  J. Porta,et al.  Structure and assembly of CAV1 8S complexes revealed by single particle electron microscopy , 2020, Science Advances.

[12]  R. Parton,et al.  Caveolae: Formation, dynamics, and function. , 2020, Current opinion in cell biology.

[13]  H. S. Hundal,et al.  Caveolin‐3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function , 2020, Journal of cachexia, sarcopenia and muscle.

[14]  M. Hubert,et al.  Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface , 2020, Biochemical Society transactions.

[15]  Sjors H W Scheres,et al.  Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 , 2020, IUCrJ.

[16]  R. Parton Caveolae: Structure, Function, and Relationship to Disease. , 2018, Annual review of cell and developmental biology.

[17]  S. Chi,et al.  Bidirectional alteration of Cav-1 expression is associated with mitogenic conversion of its function in gastric tumor progression , 2017, BMC Cancer.

[18]  A. Kenworthy,et al.  A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal , 2017, Molecular biology of the cell.

[19]  N. Tardif,et al.  The caveolae dress code: structure and signaling. , 2017, Current opinion in cell biology.

[20]  A. Malik,et al.  Aberrant caveolin-1–mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension , 2017, Molecular biology of the cell.

[21]  K. J. Glover,et al.  The C-terminal domain of caveolin-1 and pulmonary arterial hypertension: An emerging relationship , 2017 .

[22]  P. Insel,et al.  Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. , 2017, American journal of physiology. Cell physiology.

[23]  A. Kenworthy,et al.  Caveolin-1 is an aggresome-inducing protein , 2016, Scientific Reports.

[24]  Baofeng Yang,et al.  Caveolin proteins: a molecular insight into disease , 2016, Frontiers of Medicine.

[25]  A. Kenworthy,et al.  Characterization of a caveolin‐1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy , 2016, Traffic.

[26]  A. Kenworthy,et al.  Assembly and Turnover of Caveolae: What Do We Really Know? , 2016, Front. Cell Dev. Biol..

[27]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[28]  N. Patni,et al.  Congenital generalized lipodystrophies—new insights into metabolic dysfunction , 2015, Nature Reviews Endocrinology.

[29]  C. Lamaze,et al.  Caveolae and cancer: A new mechanical perspective , 2015, Biomedical journal.

[30]  R. Parton,et al.  Molecular Characterization of Caveolin-induced Membrane Curvature* , 2015, The Journal of Biological Chemistry.

[31]  Martin Kircher,et al.  Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome , 2015, American journal of medical genetics. Part A.

[32]  M. Papotti,et al.  CAVEOLIN-1 expression in brain metastasis from lung cancer predicts worse outcome and radioresistance, irrespective of tumor histotype , 2015, Oncotarget.

[33]  Jason J. Corneveaux,et al.  A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy Syndrome , 2015, PloS one.

[34]  A. Kenworthy,et al.  Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1 , 2014, Traffic.

[35]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[36]  R. Parton,et al.  SnapShot: Caveolae, Caveolins, and Cavins , 2013, Cell.

[37]  Mason R. Mackey,et al.  Molecular Composition and Ultrastructure of the Caveolar Coat Complex , 2013, PLoS biology.

[38]  Lewis J. Kraft,et al.  Overexpression of Caveolin‐1 Is Sufficient to Phenocopy the Behavior of a Disease‐Associated Mutant , 2013, Traffic.

[39]  Robert G. Parton,et al.  Caveolae as plasma membrane sensors, protectors and organizers , 2013, Nature Reviews Molecular Cell Biology.

[40]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[41]  Kai Simons,et al.  Constitutive Formation of Caveolae in a Bacterium , 2012, Cell.

[42]  Jing Hu,et al.  SIFT web server: predicting effects of amino acid substitutions on proteins , 2012, Nucleic Acids Res..

[43]  W. Chung,et al.  Whole Exome Sequencing to Identify a Novel Gene (Caveolin-1) Associated With Human Pulmonary Arterial Hypertension , 2012, Circulation. Cardiovascular genetics.

[44]  M. Rieth,et al.  Probing the caveolin-1 P132L mutant: critical insights into its oligomeric behavior and structure. , 2012, Biochemistry.

[45]  O. Daumke,et al.  EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization , 2012, Molecular biology of the cell.

[46]  A. Howell,et al.  Lack of caveolin-1 (P132L) somatic mutations in breast cancer , 2012, Breast Cancer Research and Treatment.

[47]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[48]  R. Aebersold,et al.  Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations , 2011, Nature Cell Biology.

[49]  S. Suetsugu,et al.  Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting , 2011, Journal of Cell Science.

[50]  M. Dowsett,et al.  Non-existence of caveolin-1 gene mutations in human breast cancer , 2011, Breast Cancer Research and Treatment.

[51]  Y. Kodera,et al.  Absence of the caveolin-1 P132L mutation in cancers of the breast and other organs. , 2010, The Journal of molecular diagnostics : JMD.

[52]  J. Reis-Filho,et al.  Caveolin-1 P132L mutation in human cancers: 1 CAVeat to be voiced. , 2010, The Journal of molecular diagnostics : JMD.

[53]  R. Lamb,et al.  A Role for Caveolin 1 in Assembly and Budding of the Paramyxovirus Parainfluenza Virus 5 , 2010, Journal of Virology.

[54]  M. Shatz,et al.  Caveolin-1 mutants P132L and Y14F are dominant negative regulators of invasion, migration and aggregation in H1299 lung cancer cells. , 2010, Experimental cell research.

[55]  C. G. Hansen,et al.  Exploring the caves: cavins, caveolins and caveolae. , 2010, Trends in cell biology.

[56]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[57]  A. Helenius,et al.  Biogenesis of Caveolae: Stepwise Assembly of Large Caveolin and Cavin Complexes , 2010, Traffic.

[58]  F. Sotgia,et al.  Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. , 2009, The American journal of pathology.

[59]  F. Sotgia,et al.  Clinical and Translational Implications for the Caveolin Gene Family: Lessons from Mouse Models and Human Genetic Disorders , 2009, Laboratory Investigation.

[60]  M. Kirkham,et al.  Evolutionary analysis and molecular dissection of caveola biogenesis , 2008, Journal of Cell Science.

[61]  S. O’Rahilly,et al.  Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. , 2008, The Journal of clinical endocrinology and metabolism.

[62]  M. Kirkham,et al.  PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function , 2008, Cell.

[63]  Thomas Walz,et al.  Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy , 2004, Biological Procedures Online.

[64]  R. Hegele,et al.  Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia , 2008, Lipids in Health and Disease.

[65]  Lei Zhang,et al.  Caveolin-1 regulates cellular trafficking and function of the glucagon-like Peptide 1 receptor. , 2006, Molecular endocrinology.

[66]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[67]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[68]  A. Ostermeyer,et al.  Conformational defects slow Golgi exit, block oligomerization, and reduce raft affinity of caveolin-1 mutant proteins. , 2004, Molecular biology of the cell.

[69]  S. Woodman,et al.  Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. , 2004, Neurology.

[70]  M. Lisanti,et al.  The Caveolin genes: from cell biology to medicine , 2004, Annals of medicine.

[71]  S. Woodman,et al.  Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease. , 2003, American journal of physiology. Cell physiology.

[72]  David S. Park,et al.  Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. , 2002, The American journal of pathology.

[73]  M. Lisanti,et al.  Caveolin-deficient mice: insights into caveolar function human disease. , 2001, The Journal of clinical investigation.

[74]  T Hayakawa,et al.  Invasion activating caveolin-1 mutation in human scirrhous breast cancers. , 2001, Cancer research.

[75]  M. Lisanti,et al.  Limb-girdle Muscular Dystrophy (LGMD-1C) Mutants of Caveolin-3 Undergo Ubiquitination and Proteasomal Degradation , 2000, The Journal of Biological Chemistry.

[76]  F. Zara,et al.  Mutation in the CAV3 gene causes partial caveolin-3 deficiency and persistent elevated levels of serum creatine kinase , 2000, Neurology.

[77]  M. Lisanti,et al.  Phenotypic Behavior of Caveolin-3 Mutations That Cause Autosomal Dominant Limb Girdle Muscular Dystrophy (LGMD-1C) , 1999, The Journal of Biological Chemistry.

[78]  F. Zara,et al.  Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy , 1998, Nature Genetics.

[79]  M. Lisanti,et al.  Mutational Analysis of the Properties of Caveolin-1 , 1997, The Journal of Biological Chemistry.

[80]  T. Katada,et al.  Identification, Sequence, and Expression of an Invertebrate Caveolin Gene Family from the Nematode Caenorhabditis elegans , 1997, The Journal of Biological Chemistry.

[81]  H. Lodish,et al.  Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle (*) , 1996, The Journal of Biological Chemistry.

[82]  H. Lodish,et al.  Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M. Lisanti,et al.  Oligomeric structure of caveolin: implications for caveolae membrane organization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  F. Vogel,et al.  VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. , 1995, Molecular biology of the cell.