On embedding trees into uniformly convex Banach spaces

We investigate the minimum value ofD =D(n) such that anyn-point tree metric space (T, ρ) can beD-embedded into a given Banach space (X, ∥·∥); that is, there exists a mappingf :T →X with 1/D ρ(x,y) ≤ ∥f(x) −f(y)∥ ≤ρ(x,y) for anyx,y εT. Bourgain showed thatD(n) grows to infinity for any superreflexiveX (and this characterized super-reflexivity), and forX =ℓp, 1 <p < ∞, he proved a quantitative lower bound of const·(log logn)min(1/2,1/p). We give another, completely elementary proof of this lower bound, and we prove that it is tight (up to the value of the constant). In particular, we show that anyn-point tree metric space can beD-embedded into a Euclidean space, with no restriction on the dimension, withD =O(√log logn).