EVIDENCE OF LIGHT-BENDING EFFECTS AND ITS IMPLICATION FOR SPECTRAL STATE TRANSITIONS

It has long been speculated that the nature of the hard X-ray corona may be an important second driver of black hole state transitions, in addition to the mass accretion rate through the disk. However, a clear physical picture of coronal changes has not yet emerged. We present results from a systematic analysis of Rossi X-Ray Timing Explorer observations of the stellar-mass black hole binary XTE J1650–500. All spectra with significant hard X-ray detections were fit using a self-consistent, relativistically blurred disk reflection model suited to high ionization regimes. Importantly, we find evidence that both the spectral and timing properties of black hole states may be partially driven by the height of the X-ray corona above the disk, and related changes in how gravitational light bending affects the corona–disk interaction. Specifically, the evolution of the power-law, thermal disk, and relativistically convolved reflection components in our spectral analysis indicates that: (1) the disk inner radius remains constant at rin = 1.65 ± 0.08 GM/c 2 (consistent with values found for the ISCO of XTE J1650–500 in other works) throughout the transition from the brighter phases of the low-hard state to the intermediate states (both the hard-intermediate and soft-intermediate), through to the soft state and back; (2) the ratio between the observed reflected X-ray flux and power-law continuum (the “reflection fraction,” R) increases sharply at the transition between the hard-intermediate and soft-intermediate states (“ballistic” jets are sometimes launched at this transition); (3) both the frequency and coherence of the high-frequency quasi-periodic oscillations observed in XTE J1650–500 increase with R. We discuss our results in terms of black hole states and the nature of black hole accretion flows across the mass scale.

[1]  Iron line profiles in strong gravity , 2004, astro-ph/0402199.

[2]  D. Steeghs,et al.  Initial Measurements of Black Hole Spin in GX 339–4 from Suzaku Spectroscopy , 2008, 0802.3882.

[3]  A. Laor Line Profiles from a Disk around a Rotating Black Hole , 1991 .

[4]  Jeroen Homan,et al.  Iron-line and continuum flux variations in the RXTE spectra of the black hole candidate XTE J1650-500 , 2005, astro-ph/0504182.

[5]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[6]  U. Cambridge,et al.  ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES , 2009, 0910.2877.

[7]  Cambridge,et al.  X‐ray reflection in accreting stellar‐mass black hole systems , 2007, 0709.0270.

[8]  U. Cambridge,et al.  The Accretion Disk Wind in the Black Hole GRO J1655–40 , 2008, 0802.2026.

[9]  J. García,et al.  X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. II. DIAGNOSTIC TOOLS FOR X-RAY OBSERVATIONS , 2011, 1101.1115.

[10]  J. C. Lee,et al.  A long hard look at MCG–6-30-15 with XMM-Newton , 2002, astro-ph/0311473.

[11]  C. Done,et al.  A strong and broad Fe line in the XMM-Newton spectrum of the new X-ray transient and black hole candidate XTE J1652-453 , 2010, 1004.4442.

[12]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[13]  J. Neilsen,et al.  Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105 , 2009, Nature.

[14]  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[15]  D. McCammon,et al.  Photoelectric absorption cross sections with variable abundances , 1992 .

[16]  G. Matt,et al.  Iron Kα lines from X-ray photoionized accretion discs , 1993 .

[17]  Andrew C. Fabian,et al.  X-ray reflection from cold matter in Active Galactic Nuclei and X-ray binaries , 1991 .

[18]  D. Walton,et al.  The similarity of broad iron lines in X-ray binaries and active galactic nuclei , 2012, 1202.5193.

[19]  The INTEGRAL complete sample of type 1 AGN , 2009, 0906.2909.

[20]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[21]  D. Walton,et al.  SUZAKU OBSERVATION OF THE BLACK HOLE CANDIDATE MAXI J1836–194 IN A HARD/INTERMEDIATE SPECTRAL STATE , 2011, 1111.6665.

[22]  J. Steiner,et al.  MODELING THE JET KINEMATICS OF THE BLACK HOLE MICROQUASAR XTE J1550−564: A CONSTRAINT ON SPIN–ORBIT ALIGNMENT , 2011, 1110.6849.

[23]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[24]  Mario Vietri,et al.  Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model , 1999, astro-ph/9907346.

[25]  An Extended Scheme for Fitting X-Ray Data with Accretion Disk Spectra in the Strong Gravity Regime , 2004, astro-ph/0403541.

[26]  Cambridge,et al.  A two-component ionized reflection model of MCG–6-30-15 , 2003, astro-ph/0302288.

[27]  M. Nowak,et al.  Coronal-temporal correlations in GX 339-4: hysteresis, possible reflection changes and implications for advection-dominated accretion flows , 2002, astro-ph/0201383.

[28]  J. McDuffie,et al.  A CORRELATION BETWEEN THE IONIZATION STATE OF THE INNER ACCRETION DISK AND THE EDDINGTON RATIO OF ACTIVE GALACTIC NUCLEI , 2011, 1104.1984.

[29]  Didier Barret,et al.  Supporting evidence for the signature of the innermost stable circular orbit in Rossi X-ray data from 4U 1636−536 , 2007, astro-ph/0701312.

[30]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[31]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[32]  J. Orosz,et al.  The spin of the black hole microquasar XTE J1550−564 via the continuum-fitting and Fe-line methods , 2010, 1010.1013.

[33]  W. Cui,et al.  EVIDENCE FOR FRAME-DRAGGING AROUND SPINNING BLACK HOLES IN X-RAY BINARIES , 1997, astro-ph/9710352.

[34]  G. Miniutti,et al.  A light bending model for the X-ray temporal and spectral properties of accreting black holes , 2004 .

[35]  T. E. Strohmayer,et al.  RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS , 2009, 0908.1098.

[36]  Walter H. G. Lewin,et al.  High-Frequency Quasi-periodic Oscillations in the Black Hole X-Ray Transient XTE J1650-500 , 2002 .

[37]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[38]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[39]  A. Fabian,et al.  The relativistic Fe emission line in XTE J1650–500 with BeppoSAX: evidence for black hole spin and light‐bending effects? , 2003, astro-ph/0311037.

[40]  Timothy R. White,et al.  Effects of cold matter in active galactic nuclei - A broad hump in the X-ray spectra , 1988 .

[41]  L. Stella,et al.  A Broad Iron Line in the Chandra High Energy Transmission Grating Spectrum of 4U 1705–44 , 2005 .

[42]  J. Krolik,et al.  X-ray refelection from photoionized media in active galactic nuclei , 1994 .

[43]  Tod E. Strohmayer,et al.  Relativistic Iron Emission Lines in Neutron Star Low-Mass X-Ray Binaries as Probes of Neutron Star Radii , 2007, 0708.3615.

[44]  T. Belloni The Jet Paradigm , 2010 .

[45]  C. S. Kochanek,et al.  REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING , 2012, 1204.4480.

[46]  A. Merloni,et al.  A Global Study of the Behaviour of Black Hole X-ray Binary Discs , 2010, 1009.2599.

[47]  U. Cambridge,et al.  A Long, Hard Look at the Low/Hard State in Accreting Black Holes , 2006, astro-ph/0602633.

[48]  G. Miniutti,et al.  A systematic look at the Very High and Low/Hard state of GX 339-4: Constraining the black hole spin with a new reflection model , 2008 .

[49]  D. Psaltis,et al.  Correlations in Quasi-periodic Oscillation and Noise Frequencies among Neutron Star and Black Hole X-Ray Binaries , 1999, astro-ph/9902130.

[50]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[51]  T. Dwelly,et al.  1H 0707-495 in 2011: an X-ray source within a gravitational radius of the event horizon , 2011, 1108.5988.

[52]  A. Fabian,et al.  X-ray reflection spectra from ionized slabs , 1999, astro-ph/9902325.

[53]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[54]  Laeff,et al.  STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING , 2009, 0902.2840.

[55]  A. Fabian,et al.  The iron line in MCG—6-30-15 from XMM—Newton: evidence for gravitational light bending? , 2003, astro-ph/0301588.

[56]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[57]  J. Poutanen,et al.  X-ray spectra of accretion discs with dynamic coronae , 2001, astro-ph/0102490.

[58]  A. C. Fabian,et al.  THE SPIN OF THE SUPERMASSIVE BLACK HOLE IN NGC 3783 , 2011, 1104.1172.

[59]  A. M. Beloborodov Plasma Ejection from Magnetic Flares and the X-Ray Spectrum of Cygnus X-1 , 1999 .

[60]  R. Fender Powerful jets from black hole X-ray binaries in low/hard X-ray states , 2000, astro-ph/0008447.

[61]  C. Reynolds,et al.  LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION , 2010, 1009.1882.

[62]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron Kα Emission , 1996, astro-ph/9606169.

[63]  T. Dauser,et al.  Broad emission lines for a negatively spinning black hole , 2010, Proceedings of the International Astronomical Union.

[64]  D. E. Lehr,et al.  The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible “Diskoseismic” Mode , 1996, astro-ph/9612142.

[65]  G. Matt,et al.  Iron K fluorescent lines from relativistic, ionized discs , 1996 .

[66]  A. Fabian,et al.  The effects of photoionization on X-ray reflection spectra in active galactic nuclei , 1993 .

[67]  Christopher Ricks,et al.  To J.S. , 2014 .

[68]  Orbital Parameters for the Black Hole Binary XTE J1650–500* , 2004, astro-ph/0404343.

[69]  A. Fabian,et al.  A comprehensive range of X-ray ionized-reflection models , 2005 .

[70]  M. Rupen,et al.  AN EXTREME X-RAY DISK WIND IN THE BLACK HOLE CANDIDATE IGR J17091−3624 , 2011, 1112.3648.

[71]  Moscow,et al.  Broad-band spectra of Cygnus X-1 and correlations between spectral characteristics , 2005, astro-ph/0502423.

[72]  G. Matt,et al.  Iron Kα line intensity from accretion discs around rotating black holes , 1996 .

[73]  Long term variability of Cygnus X-1 - IV. Spectral evolution 1999–2004 , 2005, astro-ph/0510193.

[74]  A. Fabian,et al.  Determining the spin of two stellar‐mass black holes from disc reflection signatures , 2009, 0902.1745.

[75]  T. Belloni,et al.  A global spectral study of black hole X-ray binaries , 2009, 0912.0142.

[76]  A. Lasenby,et al.  The lack of variability of the iron line in MCG–6‐30‐15: general relativistic effects , 2003, astro-ph/0307163.

[77]  A. Tzioumis,et al.  On the Origin of Radio Emission in the X-Ray States of XTE J1650-500 during the 2001-2002 Outburst , 2004, astro-ph/0409154.

[78]  P. Wood,et al.  EVOLUTION AND NUCLEOSYNTHESIS OF ASYMPTOTIC GIANT BRANCH STARS IN THREE MAGELLANIC CLOUD CLUSTERS , 2011, 1111.1722.

[79]  A. Fabian,et al.  On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra , 2012, 1204.5854.

[80]  Sergei Nayakshin,et al.  Thermal Instability and Photoionized X-Ray Reflection in Accretion Disks , 1999, astro-ph/9909359.

[81]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[82]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[83]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[84]  University of Cambridge,et al.  A Prominent Accretion Disk in the Low-Hard State of the Black Hole Candidate SWIFT J1753.5-0127 , 2006 .

[85]  H. Kunieda,et al.  Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG–6–30–15 , 1995, Nature.

[86]  J. Tomsick,et al.  TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY , 2009, 0911.2240.

[87]  G. Nelemans,et al.  The origin and fate of short-period low-mass black-hole binaries , 2006, astro-ph/0604434.

[88]  Sergei Nayakshin,et al.  Accretion Disk Models and Their X-Ray Reflection Signatures. I. Local Spectra , 2000, astro-ph/0005597.

[89]  A. Niedźwiecki,et al.  On the variability and spectral distortion of fluorescent iron lines from black hole accretion discs , 2007, 0710.5578.

[90]  J. N. Reeves,et al.  An XMM–Newton survey of broad iron lines in Seyfert galaxies , 2007, 0708.1305.

[91]  Didier Barret,et al.  The coherence of kilohertz quasi-periodic oscillations in the X-rays from accreting neutron stars , 2006, astro-ph/0605486.

[92]  A. Fabian,et al.  Determination of the X-ray reflection emissivity profile of 1H 0707-495 , 2011, 1102.0433.

[93]  A. Fabian,et al.  Understanding X‐ray reflection emissivity profiles in AGN: locating the X‐ray source , 2012, 1205.3179.

[94]  C. Done Accretion flows in X–ray binaries , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[95]  G. Miniutti,et al.  Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.

[96]  Cambridge,et al.  X-ray reflection by photoionized accretion discs , 2001, astro-ph/0102040.

[97]  A. Fabian,et al.  Black hole accretion discs in the canonical low‐hard state , 2009, 0911.1151.

[98]  Jeffrey S. Oishi,et al.  MAGNETOROTATIONAL TURBULENCE TRANSPORTS ANGULAR MOMENTUM IN STRATIFIED DISKS WITH LOW MAGNETIC PRANDTL NUMBER BUT MAGNETIC REYNOLDS NUMBER ABOVE A CRITICAL VALUE , 2011 .

[99]  T. Belloni,et al.  Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays , 2009, 0903.5166.

[100]  G. Matt,et al.  A relativistically smeared spectrum in the neutron star X‐ray binary 4U 1705−44: looking at the inner accretion disc with X‐ray spectroscopy , 2009, 0904.3318.

[101]  Douglas M. Eardley,et al.  A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .

[102]  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[103]  Javier A. García,et al.  X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES , 2010, 1006.0485.

[104]  M. Gilfanov,et al.  Correlations between X-ray and radio spectral properties of accreting black holes , 2002, astro-ph/0209363.