Issues and opportunities in accelerator mass spectrometry for stable isotopes.
暂无分享,去创建一个
[1] Liam A McDonnell,et al. Imaging mass spectrometry. , 2007, Mass spectrometry reviews.
[2] Ke-xin Liu,et al. Feasibility studies of RFQ based 14C accelerator mass spectrometry , 2007 .
[3] A. Bergmaier,et al. Development of isobar separation for 182Hf AMS measurements of astrophysical interest , 2007 .
[4] G. D. Mills,et al. Pushing the limits of accelerator mass spectrometry , 2007 .
[5] K. Bessho,et al. 26Al and 36Cl AMS system at the University of Tsukuba: A progress report , 2007 .
[6] K. Grabowski,et al. Implementing a SIMS ion source on the NRL trace element accelerator mass spectrometer , 2006 .
[7] A. Sefkow,et al. Fast Faraday cup to measure neutralized drift compression in intense ion charge bunches , 2006 .
[8] G. Burr,et al. Accelerator mass spectrometry: Is the future bigger or smaller? , 2006 .
[9] M. Döbeli,et al. A universal and competitive compact AMS facility , 2005 .
[10] E. Scott,et al. Application of a Modified Cameca ims 1280 Ion Microprobe to Studies of Presolar Grains, Comet Samples, and Other Early Solar-System Materials , 2005, Microscopy and Microanalysis.
[11] T. Kunihiro,et al. MegaSIMS: A High Energy Secondary Ion Mass Spectrometer for the Analysis of Captured Solar Wind. , 2005, Microscopy and Microanalysis.
[12] J. Vogel. Accelerator mass spectrometry for quantitative in vivo tracing. , 2005, BioTechniques.
[13] W. Kutschera. Progress in isotope analysis at ultra-trace level by AMS , 2005 .
[14] G. Hubler,et al. Status report of the NRL TEAMS facility , 2004 .
[15] Martin Suter,et al. 25 years of AMS – a review of recent developments , 2004 .
[16] P. Pelicon,et al. Depth profiles of H, C, O, Al and Si implants in a GaN substrate using trace element accelerator mass spectrometry , 2004 .
[17] M. Döbeli,et al. Gas ionization chambers with silicon nitride windows for the detection and identification of low energy ions , 2004 .
[18] M. Suter,et al. 10Be Analyses with a Compact AMS Facility—Are Bef2 Samples the Solution? , 2004, Radiocarbon.
[19] M. Klein,et al. Fast and Accurate Sequential Injection AMS with Gated Faraday Cup Current Measurement , 2004, Radiocarbon.
[20] J. Southon,et al. Variability of Monthly Radiocarbon During the 1760S in Corals from the Galapagos Islands , 2004, Radiocarbon.
[21] G. M. Klody,et al. Initial Results with Low Energy Single Stage AMS , 2004, Radiocarbon.
[22] J. Stachel. Heavy ion physics , 2004 .
[23] D. Elmore,et al. Accelerator mass spectrometry in geologic research , 2003 .
[24] G. Norton. New developments in design and applications for pelletron accelerators , 2002 .
[25] S. Sie,et al. AUSTRALIS: A new tool for the study of isotopic systems and geochronology in mineral systems , 2002 .
[26] Patrick Van Lierde,et al. Quantitative secondary ion mass spectrometry (SIMS) of III-V materials , 2002, SPIE OPTO.
[27] R. Golser,et al. Heavy ion AMS with a “small” accelerator , 2002 .
[28] C. Parks. Comparative ion yields by secondary ion mass spectrometry from microelectronic films , 2001 .
[29] F. McDaniel,et al. High sensitivity measurement of implanted As in the presence of Ge in GexSi1−x/Si layered alloys using trace element accelerator mass spectrometry , 2000 .
[30] H. Synal,et al. Tandem AMS at sub-MeV energies – Status and prospects , 2000 .
[31] R. Donangelo,et al. Current status of the Brazilian AMS program , 2000 .
[32] S. Sie,et al. Precision Pb and S isotopic ratio measurements by microbeam AMS , 2000 .
[33] W. Rühm,et al. High-sensitivity AMS for heavy nuclides at the Munich Tandem accelerator , 2000 .
[34] C. Stan-Sion,et al. AMS at the National Institute of Nuclear Physics and Engineering in Bucharest , 2000 .
[35] L. K. Fifield,et al. The Brazilian Bragg curve detector built for AMS studies , 2000 .
[36] H. Gove. Some Comments on Accelerator Mass Spectrometry , 2000, Radiocarbon.
[37] L. K. Fifield. Accelerator mass spectrometry and its applications , 1999 .
[38] H. Synal,et al. A new small accelerator for radiocarbon dating , 1999 .
[39] L. Vaeck,et al. Static secondary ion mass spectrometry (S-SIMS) Part 1: methodology and structural interpretation , 1999 .
[40] L. Vaeck,et al. Static secondary ion mass spectrometry (S‐SIMS) Part 2: material science applications , 1999 .
[41] S. Sie,et al. A microbeam Cs ion source for accelerator mass spectrometry , 1998 .
[42] George H. Gillespie,et al. Particle optics and accelerator modeling software for industrial and laboratory beamline design , 1998 .
[43] P. Marriott,et al. Development of a new compact high resolution sector inductively coupled plasma mass spectrometer , 1998 .
[44] M. Suter,et al. AMS OF 14C AT LOW ENERGIES , 1997 .
[45] M. Döbeli,et al. Accelerator SIMS at PSI/ETH Zurich , 1997 .
[46] M. Döbeli,et al. Characterization of the accelerator SIMS setup at PSI/ETH Zurich , 1997 .
[47] F. McDaniel,et al. Simultaneous measurement of the average ion-induced electron emission yield and the mean charge for isotachic ions in carbon foils , 1997 .
[48] Gnaser. Exponential scaling of sputtered negative-ion yields with transient work-function changes on Cs+-bombarded surfaces. , 1996, Physical review. B, Condensed matter.
[49] G. Hieftje,et al. An introduction to ion optics for the mass spectrograph. , 1996, Mass spectrometry reviews.
[50] W. Sommer,et al. Review of carbon stripper foil lifetime , 1995 .
[51] Sigmund. Analysis of charge-dependent stopping of swift ions. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.
[52] H. Synal,et al. Optimising tandem accelerator stripping efficiency by simulation of charge changing processes , 1994 .
[53] T. J. Bennett,et al. FABRICATION OF SILICON-BASED OPTICAL COMPONENTS FOR AN ULTRACLEAN ACCELERATOR MASS SPECTROMETRY NEGATIVE ION SOURCE , 1994 .
[54] M. Döbeli,et al. Accelerator SIMS for trace element detection , 1994 .
[55] A. H. Wapstra,et al. The 1993 atomic mass evaluation: (I) Atomic mass table , 1993 .
[56] F. McDaniel,et al. Trace element analysis by accelerator mass spectrometry , 1993 .
[57] G. Gillen. High dynamic range SIMS depth profiling on in situ ion‐beam‐generated mesas using the ion microscope , 1992 .
[58] H. Budzikiewicz. Selected reviews on mass spectrometric topics. XLVII. Accelerator mass spectrometry , 1992 .
[59] J. L. Duggan,et al. Molecular ion stability and populations in tandem accelerator mass spectrometry , 1992 .
[60] S. H. Phillips,et al. Accelerator terminal voltage stability , 1992 .
[61] Alvin Lieberman,et al. Contamination Control and Cleanrooms , 1992 .
[62] A. Gillitzer,et al. AMS measurements at the Munich tandem with a time-of-flight setup , 1990 .
[63] T. J. Shaffner. New developments in surface characterization techniques for the semiconductor industry , 1989 .
[64] R. Colton,et al. Results of a SIMS round robin sponsored by ASTM committee E‐42 on surface analysis , 1989 .
[65] F. Phillips,et al. Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes , 1987, Science.
[66] H. Wollnik. 7 – Fringing Fields , 1987 .
[67] H. Shih,et al. Morphological studies of oval defects in GaAs epitaxial layers grown by molecular beam epitaxy , 1986 .
[68] L. Kilius,et al. The 12CH22+ molecule and radiocarbon dating by accelerator mass spectrometry , 1984 .
[69] H. Gove,et al. Ultra-sensitive particle identification systems based upon electrostatic accelerators , 1979 .
[70] M. Nicolet,et al. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry , 1979 .
[71] T. Mast,et al. Radioisotope Dating with an Accelerator: A Blind Measurement , 1978, Science.
[72] C. Bennett,et al. Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key , 1977, Science.
[73] R. Middleton,et al. A close to universal negative ion source , 1974 .