Issues and opportunities in accelerator mass spectrometry for stable isotopes.

Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development.

[1]  Liam A McDonnell,et al.  Imaging mass spectrometry. , 2007, Mass spectrometry reviews.

[2]  Ke-xin Liu,et al.  Feasibility studies of RFQ based 14C accelerator mass spectrometry , 2007 .

[3]  A. Bergmaier,et al.  Development of isobar separation for 182Hf AMS measurements of astrophysical interest , 2007 .

[4]  G. D. Mills,et al.  Pushing the limits of accelerator mass spectrometry , 2007 .

[5]  K. Bessho,et al.  26Al and 36Cl AMS system at the University of Tsukuba: A progress report , 2007 .

[6]  K. Grabowski,et al.  Implementing a SIMS ion source on the NRL trace element accelerator mass spectrometer , 2006 .

[7]  A. Sefkow,et al.  Fast Faraday cup to measure neutralized drift compression in intense ion charge bunches , 2006 .

[8]  G. Burr,et al.  Accelerator mass spectrometry: Is the future bigger or smaller? , 2006 .

[9]  M. Döbeli,et al.  A universal and competitive compact AMS facility , 2005 .

[10]  E. Scott,et al.  Application of a Modified Cameca ims 1280 Ion Microprobe to Studies of Presolar Grains, Comet Samples, and Other Early Solar-System Materials , 2005, Microscopy and Microanalysis.

[11]  T. Kunihiro,et al.  MegaSIMS: A High Energy Secondary Ion Mass Spectrometer for the Analysis of Captured Solar Wind. , 2005, Microscopy and Microanalysis.

[12]  J. Vogel Accelerator mass spectrometry for quantitative in vivo tracing. , 2005, BioTechniques.

[13]  W. Kutschera Progress in isotope analysis at ultra-trace level by AMS , 2005 .

[14]  G. Hubler,et al.  Status report of the NRL TEAMS facility , 2004 .

[15]  Martin Suter,et al.  25 years of AMS – a review of recent developments , 2004 .

[16]  P. Pelicon,et al.  Depth profiles of H, C, O, Al and Si implants in a GaN substrate using trace element accelerator mass spectrometry , 2004 .

[17]  M. Döbeli,et al.  Gas ionization chambers with silicon nitride windows for the detection and identification of low energy ions , 2004 .

[18]  M. Suter,et al.  10Be Analyses with a Compact AMS Facility—Are Bef2 Samples the Solution? , 2004, Radiocarbon.

[19]  M. Klein,et al.  Fast and Accurate Sequential Injection AMS with Gated Faraday Cup Current Measurement , 2004, Radiocarbon.

[20]  J. Southon,et al.  Variability of Monthly Radiocarbon During the 1760S in Corals from the Galapagos Islands , 2004, Radiocarbon.

[21]  G. M. Klody,et al.  Initial Results with Low Energy Single Stage AMS , 2004, Radiocarbon.

[22]  J. Stachel Heavy ion physics , 2004 .

[23]  D. Elmore,et al.  Accelerator mass spectrometry in geologic research , 2003 .

[24]  G. Norton New developments in design and applications for pelletron accelerators , 2002 .

[25]  S. Sie,et al.  AUSTRALIS: A new tool for the study of isotopic systems and geochronology in mineral systems , 2002 .

[26]  Patrick Van Lierde,et al.  Quantitative secondary ion mass spectrometry (SIMS) of III-V materials , 2002, SPIE OPTO.

[27]  R. Golser,et al.  Heavy ion AMS with a “small” accelerator , 2002 .

[28]  C. Parks Comparative ion yields by secondary ion mass spectrometry from microelectronic films , 2001 .

[29]  F. McDaniel,et al.  High sensitivity measurement of implanted As in the presence of Ge in GexSi1−x/Si layered alloys using trace element accelerator mass spectrometry , 2000 .

[30]  H. Synal,et al.  Tandem AMS at sub-MeV energies – Status and prospects , 2000 .

[31]  R. Donangelo,et al.  Current status of the Brazilian AMS program , 2000 .

[32]  S. Sie,et al.  Precision Pb and S isotopic ratio measurements by microbeam AMS , 2000 .

[33]  W. Rühm,et al.  High-sensitivity AMS for heavy nuclides at the Munich Tandem accelerator , 2000 .

[34]  C. Stan-Sion,et al.  AMS at the National Institute of Nuclear Physics and Engineering in Bucharest , 2000 .

[35]  L. K. Fifield,et al.  The Brazilian Bragg curve detector built for AMS studies , 2000 .

[36]  H. Gove Some Comments on Accelerator Mass Spectrometry , 2000, Radiocarbon.

[37]  L. K. Fifield Accelerator mass spectrometry and its applications , 1999 .

[38]  H. Synal,et al.  A new small accelerator for radiocarbon dating , 1999 .

[39]  L. Vaeck,et al.  Static secondary ion mass spectrometry (S-SIMS) Part 1: methodology and structural interpretation , 1999 .

[40]  L. Vaeck,et al.  Static secondary ion mass spectrometry (S‐SIMS) Part 2: material science applications , 1999 .

[41]  S. Sie,et al.  A microbeam Cs ion source for accelerator mass spectrometry , 1998 .

[42]  George H. Gillespie,et al.  Particle optics and accelerator modeling software for industrial and laboratory beamline design , 1998 .

[43]  P. Marriott,et al.  Development of a new compact high resolution sector inductively coupled plasma mass spectrometer , 1998 .

[44]  M. Suter,et al.  AMS OF 14C AT LOW ENERGIES , 1997 .

[45]  M. Döbeli,et al.  Accelerator SIMS at PSI/ETH Zurich , 1997 .

[46]  M. Döbeli,et al.  Characterization of the accelerator SIMS setup at PSI/ETH Zurich , 1997 .

[47]  F. McDaniel,et al.  Simultaneous measurement of the average ion-induced electron emission yield and the mean charge for isotachic ions in carbon foils , 1997 .

[48]  Gnaser Exponential scaling of sputtered negative-ion yields with transient work-function changes on Cs+-bombarded surfaces. , 1996, Physical review. B, Condensed matter.

[49]  G. Hieftje,et al.  An introduction to ion optics for the mass spectrograph. , 1996, Mass spectrometry reviews.

[50]  W. Sommer,et al.  Review of carbon stripper foil lifetime , 1995 .

[51]  Sigmund Analysis of charge-dependent stopping of swift ions. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[52]  H. Synal,et al.  Optimising tandem accelerator stripping efficiency by simulation of charge changing processes , 1994 .

[53]  T. J. Bennett,et al.  FABRICATION OF SILICON-BASED OPTICAL COMPONENTS FOR AN ULTRACLEAN ACCELERATOR MASS SPECTROMETRY NEGATIVE ION SOURCE , 1994 .

[54]  M. Döbeli,et al.  Accelerator SIMS for trace element detection , 1994 .

[55]  A. H. Wapstra,et al.  The 1993 atomic mass evaluation: (I) Atomic mass table , 1993 .

[56]  F. McDaniel,et al.  Trace element analysis by accelerator mass spectrometry , 1993 .

[57]  G. Gillen High dynamic range SIMS depth profiling on in situ ion‐beam‐generated mesas using the ion microscope , 1992 .

[58]  H. Budzikiewicz Selected reviews on mass spectrometric topics. XLVII. Accelerator mass spectrometry , 1992 .

[59]  J. L. Duggan,et al.  Molecular ion stability and populations in tandem accelerator mass spectrometry , 1992 .

[60]  S. H. Phillips,et al.  Accelerator terminal voltage stability , 1992 .

[61]  Alvin Lieberman,et al.  Contamination Control and Cleanrooms , 1992 .

[62]  A. Gillitzer,et al.  AMS measurements at the Munich tandem with a time-of-flight setup , 1990 .

[63]  T. J. Shaffner New developments in surface characterization techniques for the semiconductor industry , 1989 .

[64]  R. Colton,et al.  Results of a SIMS round robin sponsored by ASTM committee E‐42 on surface analysis , 1989 .

[65]  F. Phillips,et al.  Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes , 1987, Science.

[66]  H. Wollnik 7 – Fringing Fields , 1987 .

[67]  H. Shih,et al.  Morphological studies of oval defects in GaAs epitaxial layers grown by molecular beam epitaxy , 1986 .

[68]  L. Kilius,et al.  The 12CH22+ molecule and radiocarbon dating by accelerator mass spectrometry , 1984 .

[69]  H. Gove,et al.  Ultra-sensitive particle identification systems based upon electrostatic accelerators , 1979 .

[70]  M. Nicolet,et al.  Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry , 1979 .

[71]  T. Mast,et al.  Radioisotope Dating with an Accelerator: A Blind Measurement , 1978, Science.

[72]  C. Bennett,et al.  Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key , 1977, Science.

[73]  R. Middleton,et al.  A close to universal negative ion source , 1974 .