Cryo-EM: beyond the microscope.

[1]  Slavica Jonić,et al.  Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. , 2017, Current opinion in structural biology.

[2]  W. Kühlbrandt,et al.  Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2 , 2017, Nature Structural &Molecular Biology.

[3]  Kathleen F Mittendorf,et al.  While the revolution will not be crystallized, biochemistry reigns supreme , 2017, Protein science : a publication of the Protein Society.

[4]  E. Carpenter,et al.  Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2) , 2016, Nature Structural &Molecular Biology.

[5]  Kazutoshi Tani,et al.  Atomic structure of the innexin-6 gap junction channel determined by cryo-EM , 2016, Nature Communications.

[6]  Dmitry Lyumkis,et al.  Modular Assembly of the Bacterial Large Ribosomal Subunit , 2016, Cell.

[7]  Wen Jiang,et al.  Antibody-Based Affinity Cryo-Electron Microscopy at 2.6 Å Resolution , 2016, bioRxiv.

[8]  C. Robinson,et al.  Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase , 2016, Nature.

[9]  Jianping Wu,et al.  Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2 , 2016, Science.

[10]  Wen Jiang,et al.  Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide , 2016, Scientific Reports.

[11]  E. Nogales,et al.  Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. , 2016, Current opinion in structural biology.

[12]  J. Frank,et al.  Structural Basis for Gating and Activation of RyR1 , 2016, Cell.

[13]  Yigong Shi,et al.  Structure of a yeast activated spliceosome at 3.5 angstrom resolution , 2016 .

[14]  G. Degliesposti,et al.  Atomic structure of the entire mammalian mitochondrial complex I , 2016, Nature.

[15]  S. Subramaniam,et al.  Structural basis of kainate subtype glutamate receptor desensitization , 2016, Nature.

[16]  Zhen Yan,et al.  Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution , 2016, Nature.

[17]  A. J. Williams,et al.  Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1 , 2016, Cell Research.

[18]  Stefan Raunser,et al.  Membrane insertion of a Tc toxin in near-atomic detail , 2016, Nature Structural &Molecular Biology.

[19]  Yigong Shi,et al.  Structure of a yeast activated spliceosome at 3.5 Å resolution , 2016, Science.

[20]  J. Hirst,et al.  Structure of mammalian respiratory complex I , 2016, Nature.

[21]  William J. Rice,et al.  A new method for vitrifying samples for cryo-EM , 2017 .

[22]  L. Kay,et al.  Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study , 2016, Proceedings of the National Academy of Sciences.

[23]  M. Rossmann,et al.  Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma , 2016, Proceedings of the National Academy of Sciences.

[24]  Mindy I. Davis,et al.  Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery , 2016, Cell.

[25]  Prashant Rao,et al.  Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase , 2016, Molecular Pharmacology.

[26]  S. Sligar,et al.  Nanodiscs for structural and functional studies of membrane proteins , 2016, Nature Structural &Molecular Biology.

[27]  G. Gao,et al.  Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection , 2016, Cell.

[28]  Jamie H. D. Cate,et al.  Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules , 2016, bioRxiv.

[29]  J. Murray,et al.  Structural characterization of ribosome recruitment and translocation by type IV IRES , 2016, eLife.

[30]  N. Grigorieff,et al.  Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome , 2016, eLife.

[31]  Wen Jiang,et al.  Antibody-based affinity cryo-EM grid. , 2016, Methods.

[32]  D. Julius,et al.  TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action , 2016, Nature.

[33]  C. Russo,et al.  Progress towards an optimal specimen support for electron cryomicroscopy , 2016, Current opinion in structural biology.

[34]  Z. Zhou,et al.  Structure of the full-length TRPV2 channel by cryo-EM , 2016, Nature Communications.

[35]  H. Stark,et al.  Molecular architecture of the human U4/U6.U5 tri-snRNP , 2016, Science.

[36]  A. Bartesaghi,et al.  2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition , 2016, Science.

[37]  Z. Zhou,et al.  Structure of the Full-Length TRPV2 Channel by cryoEM , 2016 .

[38]  Prashant Rao,et al.  Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating , 2016, Cell.

[39]  V. Uversky Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins* , 2016, The Journal of Biological Chemistry.

[40]  K. Nagai,et al.  CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast , 2016, Current opinion in structural biology.

[41]  H. Stark,et al.  Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. , 2016, Microscopy.

[42]  Bernhard Rupp,et al.  Protein stability: a crystallographer’s perspective , 2016, Acta crystallographica. Section F, Structural biology communications.

[43]  Kyle J. Wright,et al.  Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[44]  Michael N. Hall,et al.  Architecture of human mTOR complex 1 , 2016, Science.

[45]  Gabriel C Lander,et al.  Cryo-electron microscopy structure of the TRPV2 ion channel , 2015, Nature Structural &Molecular Biology.

[46]  H. Stahlberg,et al.  3D reconstruction of two-dimensional crystals. , 2015, Archives of biochemistry and biophysics.

[47]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[48]  H. Stark,et al.  GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. , 2015, Structure.

[49]  Utz Fischer,et al.  ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space , 2015, Nature Methods.

[50]  D. Boehringer,et al.  Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution , 2015, Nature Communications.

[51]  Yanyu Zhao,et al.  Structural basis of human γ-secretase assembly , 2015, Proceedings of the National Academy of Sciences.

[52]  G. Skiniotis,et al.  Architecture of the polyketide synthase module: surprises from electron cryo-microscopy. , 2015, Current opinion in structural biology.

[53]  D. Julius,et al.  Structure of the TRPA1 ion channel suggests regulatory mechanisms , 2015, Nature.

[54]  M. R. Baker,et al.  Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment , 2015, European journal of translational myology.

[55]  Prashant Rao,et al.  Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports , 2014, Scientific Reports.

[56]  J. Hirst,et al.  Architecture of mammalian respiratory complex I , 2014, Nature.

[57]  Prashant Rao,et al.  Structural mechanism of glutamate receptor activation and desensitization , 2014, Nature.

[58]  Yanyu Zhao,et al.  Three-dimensional structure of human γ-secretase , 2014, Nature.

[59]  Z. Zhou,et al.  Structures of viral membrane proteins by high-resolution cryoEM. , 2014, Current opinion in virology.

[60]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[61]  Wladek Minor,et al.  Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination , 2013, The FEBS journal.

[62]  William J. Rice,et al.  Ultrastructural analysis of hepatitis C virus particles , 2013, Proceedings of the National Academy of Sciences.

[63]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[64]  N. Grigorieff Direct detection pays off for electron cryo-microscopy , 2013, eLife.

[65]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[66]  Sriram Subramaniam,et al.  Cryo‐electron microscopy – a primer for the non‐microscopist , 2013, The FEBS journal.

[67]  Wladek Minor,et al.  Identification of unknown protein function using metabolite cocktail screening. , 2012, Structure.

[68]  B. Carragher,et al.  Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. , 2012, Journal of structural biology.

[69]  Liguo Wang,et al.  Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection. , 2008, Journal of structural biology.

[70]  Gary Siuzdak,et al.  The structure of apo human glutamate dehydrogenase details subunit communication and allostery. , 2002, Journal of molecular biology.

[71]  L. Iakoucheva,et al.  Intrinsic Disorder and Protein Function , 2002 .

[72]  C. Tribet,et al.  Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  R. Daniel,et al.  L-glutamate dehydrogenases: distribution, properties and mechanism. , 1993, Comparative biochemistry and physiology. B, Comparative biochemistry.

[74]  M. R. Baker,et al.  Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. , 2015, European journal of translational myology.

[75]  F. Haurowitz,et al.  Das Gleichgewicht zwischen Hämoglobin und Sauerstoff. , 1938 .