Self-adaptation and global convergence: a counter-example

The self-adaptation of the mutation distribution is a distinguishing feature of evolutionary algorithms that optimize over continuous variables. It is widely recognized that self-adaptation accelerates the search for optima and enhances the ability to locate optima accurately, but it is generally unclear whether these optima are global ones or not. Here, it is proven that the probability of convergence to the global optimum is less than one in general, even if the objective function is continuous.

[1]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[2]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[3]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[4]  Georg Rappl,et al.  Konvergenzraten von Random-Search-Verfahren zur globalen Optimierung , 1984 .

[5]  Thomas Bck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[6]  Cornelia Kappler,et al.  Are Evolutionary Algorithms Improved by Large Mutations? , 1996, PPSN.

[7]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[8]  Thomas Bäck,et al.  An Overview of Parameter Control Methods by Self-Adaption in Evolutionary Algorithms , 1998, Fundam. Informaticae.

[9]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[10]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[11]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[12]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .