DISTANCE DETERMINATION TO EIGHT GALAXIES USING EXPANDING PHOTOSPHERE METHOD

Type IIP supernovae (SNe) are recognized as independent extragalactic distance indicators; however, keeping in mind the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested for their applicability as reliable distance indicators. We use early photometric and spectroscopic data of eight Type IIP SNe to derive distances to their host galaxies by using the expanding photosphere method (EPM). For five of these, the EPM is applied for the first time. In this work, we improved EPM application by using SYNOW estimated velocities and by semi-deconvolving the broadband filter responses while deriving color temperatures and blackbody angular radii. We find that the derived EPM distances are consistent with that derived using other redshift-independent methods.

[1]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[2]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[3]  M. L. Pumo,et al.  The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase , 2011, 1102.5468.

[4]  Nial R. Tanvir,et al.  The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em , 2003, astro-ph/0305259.

[5]  J. Vinkó,et al.  The Expanding Photosphere Method: Progress and Problems , 2007, 0704.0552.

[6]  D. Kasen,et al.  Direct Analysis of Spectra of Type Ib Supernovae , 1999, astro-ph/0106367.

[7]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[8]  D. Poznanski An emerging coherent picture of red supergiant supernova explosions , 2013, 1304.4967.

[9]  Nicholas B. Suntzeff,et al.  The distances to five Type II supernovae using the expanding photosphere method, and the value of H(sub 0) , 1994 .

[10]  R. Foley,et al.  DISTANCE DETERMINATION TO 12 TYPE II SUPERNOVAE USING THE EXPANDING PHOTOSPHERE METHOD , 2008, 0903.1460.

[11]  D. Russell The H I Line Width/Linear Diameter Relationship as an Independent Test of the Hubble Constant , 2002 .

[12]  R. Itoh,et al.  SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION , 2013, 1303.1565.

[13]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[14]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[15]  R. Kirshner,et al.  Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale , 1992, astro-ph/9204004.

[16]  Brian Paul Schmidt,et al.  The atmospheres of type II supernovae and the expanding photosphere method , 1996 .

[17]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[18]  D. Branch,et al.  Reddening, Abundances, and Line Formation in SNe II , 2007, astro-ph/0703068.

[19]  L. D. J. Hillier Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.

[20]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[21]  E. Baron,et al.  ON THE SPECTRUM AND NATURE OF THE PECULIAR TYPE IA SUPERNOVA 1991T , 1999 .

[22]  G. Anupama,et al.  Photometric and spectroscopic evolution of the Type IIP supernova SN 2004et , 2006, astro-ph/0608432.

[23]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[24]  Moscow,et al.  Type IIP supernova 2008in: the explosion of a normal red supergiant , 2013, 1306.5122.

[25]  Robert P. Kirshner,et al.  THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.

[26]  T. N. Sokolova,et al.  The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.

[27]  Ryan Chornock,et al.  Observed Fractions of Core-Collapse Supernova Types and Initial Masses of their Single and Binary Progenitor Stars , 2010, 1006.3899.

[28]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[29]  P. Brown,et al.  X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission , 2007, astro-ph/0703765.

[30]  Quantitative spectroscopic analysis of and distance to SN1999em , 2005, astro-ph/0510526.

[31]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[32]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[33]  R. Wagoner Effects of scattering on continuum radiation from supernovae and determination of their distances , 1981 .

[34]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[35]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[36]  A. Pal,et al.  Improved distance determination to M 51 from supernovae 2011dh and 2005cs , 2011, 1111.0596.

[37]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[38]  David R. Turner,et al.  Determination of pH , 2007 .

[39]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[40]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[41]  The Distance to SN 1999em from the Expanding Photosphere Method , 2001, astro-ph/0105006.

[42]  P. Nugent,et al.  Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .

[43]  J. Vinkó,et al.  Measuring expansion velocities in Type II-P supernovae , 2011, 1109.5873.

[44]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[45]  Robert P. Kirshner,et al.  Distances to extragalactic supernovae , 1974 .

[46]  Robert P. Kirshner,et al.  A Study of the Type II-Plateau Supernova 1999gi and the Distance to its Host Galaxy, NGC 3184 , 2002, astro-ph/0207601.

[47]  D. Arnett Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present , 1996 .

[48]  J. José,et al.  Nuclear astrophysics: the unfinished quest for the origin of the elements , 2011, 1107.2234.

[49]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[50]  B. Kumar,et al.  SN 2008in—BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP , 2011, 1106.2390.

[51]  B. Kumar,et al.  Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.

[52]  Philip A. Pinto,et al.  Type II Supernovae as Standardized Candles , 2002 .

[53]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[54]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.