Bounded Influence Propagation $\tau$ -Estimation: A New Robust Method for ARMA Model Estimation

A new robust and statistically efficient estimator for ARMA models called the bounded influence propagation <inline-formula><tex-math notation="LaTeX">$\tau$</tex-math></inline-formula>-estimator is proposed. The estimator incorporates an auxiliary model, which prevents the propagation of outliers. Strong consistency and asymptotic normality of the estimator for ARMA models that are driven by independently and identically distributed (iid) innovations with symmetric distributions are established. To analyze the infinitesimal effect of outliers on the estimator, the influence function is derived and computed explicitly for an AR(1) model with additive outliers. To obtain estimates for the AR(<inline-formula><tex-math notation="LaTeX">$p$</tex-math></inline-formula>) model, a robust Durbin–Levinson type and a forward–backward algorithm are proposed. An iterative algorithm to robustly obtain ARMA(<inline-formula><tex-math notation="LaTeX">$p,q$</tex-math></inline-formula>) parameter estimates is also presented. The problem of finding a robust initialization is addressed, which for orders <inline-formula> <tex-math notation="LaTeX">$p+q > 2$</tex-math></inline-formula> is a nontrivial matter. Numerical experiments are conducted to compare the finite sample performance of the proposed estimator to existing robust methodologies for different types of outliers both in terms of average and of worst case performance, as measured by the maximum bias curve. To illustrate the practical applicability of the proposed estimator, a real-data example of outlier cleaning for R–R interval plots derived from electrocardiographic data is considered. The proposed estimator is not limited to biomedical applications, but is also useful in any real-world problem whose observations can be modeled as an ARMA process disturbed by outliers or impulsive noise.

[1]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[2]  Nora Muler,et al.  Robust estimates for arch processes , 2002 .

[3]  S. Haykin Adaptive Radar Signal Processing , 2013 .

[4]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[5]  WangZidong,et al.  Robust H∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts , 2010 .

[6]  Richard H. Jones,et al.  Maximum Likelihood Fitting of ARMA Models to Time Series With Missing Observations , 1980 .

[7]  W. McEneaney Robust/ H ∞ filtering for nonlinear systems , 1998 .

[8]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[9]  Michael Muma,et al.  Motion artifact removal in ECG signals using multi-resolution thresholding , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[10]  Ursula Gather,et al.  Online analysis of time series by the Qn estimator , 2009, Comput. Stat. Data Anal..

[11]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[12]  Huijun Gao,et al.  Robust $H_{\infty}$ Filtering for a Class of Nonlinear Networked Systems With Multiple Stochastic Communication Delays and Packet Dropouts , 2010, IEEE Transactions on Signal Processing.

[13]  B. Andrews,et al.  Rank‐based estimation for autoregressive moving average time series models , 2007 .

[14]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[15]  Torsten Söderström,et al.  An efficient linear method for ARMA spectral estimation , 1994, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  Roland Fried,et al.  Robust estimation of (partial) autocorrelation , 2015 .

[17]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[18]  Stuart Jay Deutsch,et al.  Effects of a single outlier on arma identification , 1990 .

[19]  V. Yohai,et al.  Influence Functionals for Time Series , 1986 .

[20]  Kenneth E. Barner,et al.  Meridian Filtering for Robust Signal Processing , 2007, IEEE Transactions on Signal Processing.

[21]  Pascal Bondon,et al.  Periodic ARMA models: Application to particulate matter concentrations , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[22]  Dong Wan Shin,et al.  Unit root tests for time series with outliers , 1996 .

[23]  Lamine Mili,et al.  A new robust estimation method for ARMA models , 2009, ICASSP.

[24]  Michael Muma,et al.  An Online Approach for ICP Forecasting Based on Signal Decomposition and Robust Statistics , 2013 .

[25]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[26]  M. Genton,et al.  Robust Simulation-Based Estimation of ARMA Models , 2001 .

[27]  Michael Muma,et al.  Robust model order selection for ARMA models based on the bounded innovation propagation τ-estimator , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[28]  Lamine Mili,et al.  Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator , 2010, IEEE Transactions on Signal Processing.

[29]  Yacine Chakhchoukh,et al.  A New Robust Estimation Method for ARMA Models , 2009, IEEE Transactions on Signal Processing.

[30]  Christine H. Müller,et al.  High Breakdown Point and High Efficiency , 1997 .

[31]  Lionel Tarassenko Signal processing methods for heart rate variability , 2002 .

[32]  R. Dutter,et al.  ESTIMATING SPECTRAL DENSITY FUNCTIONS ROBUSTLY , 2006 .

[33]  Stephane Guerrier,et al.  Robust Inference for Time Series Models: a Wavelet-based Framework , 2015, 1512.09325.

[34]  Sonja Kuhnt,et al.  Robustness and complex data structures : Festschrift in honour of Ursula Gather , 2013 .

[35]  Willis J. Tompkins,et al.  A Real-Time QRS Detection Algorithm , 1985, IEEE Transactions on Biomedical Engineering.

[36]  Céline Lévy-Leduc,et al.  A robust estimation approach for fitting a PARMA model to real data , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[37]  Francisco Cribari-Neto,et al.  Robust estimation in long-memory processes under additive outliers , 2009 .

[38]  D. Thomson,et al.  Robust-resistant spectrum estimation , 1982, Proceedings of the IEEE.

[39]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[40]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[41]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[42]  Roberto Molinari,et al.  Fast and Robust Parametric Estimation for Time Series and Spatial Models , 2016 .

[43]  Hamid Louni Outlier Detection in Arma Models , 2008 .

[44]  Gonzalo R. Arce,et al.  Optimality of the myriad filter in practical impulsive-noise environments , 2001, IEEE Trans. Signal Process..

[45]  Michael Muma,et al.  A new method for heart rate monitoring during physical exercise using photoplethysmographic signals , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[46]  Yuanxi Yang,et al.  Adaptively robust filtering for kinematic geodetic positioning , 2001 .

[47]  Feng Ding,et al.  Performance analysis of estimation algorithms of nonstationary ARMA processes , 2006, IEEE Transactions on Signal Processing.

[48]  R. Tsay Outliers, Level Shifts, and Variance Changes in Time Series , 1988 .

[49]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[50]  Victor J. Yohai,et al.  Rejoinder: Influence Functionals for Time Series , 1986 .

[51]  Oscar H. Bustos,et al.  Robust Estimates for ARMA Models , 1986 .

[52]  H. Shahriari,et al.  Parameter Estimation of Autoregressive Models Using the Iteratively Robust Filtered Fast-τ Method , 2014 .

[53]  Feng Ding,et al.  Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems , 2014, Signal Process..

[54]  L. Mili,et al.  Electric Load Forecasting Based on Statistical Robust Methods , 2011, IEEE Transactions on Power Systems.

[55]  Kenneth P. Camilleri,et al.  Order Estimation of Multivariate ARMA Models , 2010, IEEE Journal of Selected Topics in Signal Processing.

[56]  Herold Dehling,et al.  A robust method for shift detection in time series , 2015, Biometrika.

[57]  Matthias Nussbaum,et al.  Advanced Digital Signal Processing And Noise Reduction , 2016 .

[58]  Rolf Turner,et al.  A test for additive outliers applicable to long-memory time series , 2006 .

[59]  G. Ljung,et al.  On Outlier Detection in Time Series , 1993 .

[60]  Michael Muma,et al.  Robust Estimation in Signal Processing: A Tutorial-Style Treatment of Fundamental Concepts , 2012, IEEE Signal Processing Magazine.

[61]  Mika P. Tarvainen,et al.  Estimation of nonstationary EEG with Kalman smoother approach: an application to event-related synchronization (ERS) , 2004, IEEE Transactions on Biomedical Engineering.

[62]  Yuriy S. Kharin,et al.  Robust estimation of AR coefficients under simultaneously influencing outliers and missing values , 2011 .

[63]  Pascal Bondon,et al.  Robust estimation of SARIMA models: Application to short-term load forecasting , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[64]  Ta-Hsin Li A Nonlinear Method for Robust Spectral Analysis , 2010, IEEE Transactions on Signal Processing.

[65]  Chih-Ling Tsai,et al.  Outlier Detections in Autoregressive Models , 2003 .

[66]  Xiaodong Wang,et al.  Robust discovery of periodically expressed genes using the laplace periodogram , 2009, BMC Bioinformatics.

[67]  V. Yohai,et al.  Robust Estimation for ARMA models , 2009, 0904.0106.

[68]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[69]  Lamine Mili,et al.  Robust state estimation of electric power systems , 1994 .