Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Performance in Solar Cells.

Solution-processed lead halide perovskite thin-film solar cells have achieved power conversion efficiencies comparable to those obtained with several commercial photovoltaic technologies in a remarkably short period of time. This rapid rise in device efficiency is largely the result of the development of fabrication protocols capable of producing continuous, smooth perovskite films with micrometer-sized grains. Further developments in film fabrication and morphological control are necessary, however, in order for perovskite solar cells to reliably and reproducibly approach their thermodynamic efficiency limit. This Perspective discusses the fabrication of lead halide perovskite thin films, while highlighting the processing-property-performance relationships that have emerged from the literature, and from this knowledge, suggests future research directions.

[1]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[2]  Kevin G. Stamplecoskie,et al.  Dual nature of the excited state in organic–inorganic lead halide perovskites , 2015 .

[3]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[4]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[5]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[6]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[7]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[8]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[9]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[10]  Yongzhen Wu,et al.  High‐Quality Mixed‐Organic‐Cation Perovskites from a Phase‐Pure Non‐stoichiometric Intermediate (FAI)1−x‐PbI2 for Solar Cells , 2015, Advanced materials.

[11]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[12]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[13]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[14]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[15]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[16]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[17]  Keitaro Sodeyama,et al.  Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[18]  David Cahen,et al.  Perovskite Solar Cells: Do We Know What We Do Not Know? , 2015, The journal of physical chemistry letters.

[19]  A. Jen,et al.  Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. , 2014, ACS nano.

[20]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[21]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[22]  Chunhui Huang,et al.  High‐Performance Planar Solar Cells Based On CH3NH3PbI3‐xClx Perovskites with Determined Chlorine Mole Fraction , 2015 .

[23]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[24]  Ni Zhao,et al.  The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite , 2014 .

[25]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[26]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[27]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[28]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[29]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[30]  Gong Gu,et al.  High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing , 2015 .

[31]  E. Sanehira,et al.  Heterogeneous Charge Carrier Dynamics in Organic-Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films. , 2015, Nano letters.

[32]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[33]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[34]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[35]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[36]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[37]  Yongli Gao,et al.  Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing , 2014 .

[38]  A. Jen,et al.  The roles of alkyl halide additives in enhancing perovskite solar cell performance , 2015 .

[39]  Hao Gao,et al.  Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity. , 2015, ACS applied materials & interfaces.

[40]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[41]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[42]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[43]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[44]  Taiyang Zhang,et al.  Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance , 2015 .

[45]  Lead Iodide Thin Film Crystallization Control for High-Performance and Stable Solution-Processed Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[46]  H. Hillhouse,et al.  Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERG). , 2015, The journal of physical chemistry letters.

[47]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[48]  H. Sirringhaus,et al.  Local Versus Long‐Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites , 2015, Advanced science.

[49]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[50]  Michael F Toney,et al.  Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015, Advanced materials.

[51]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[52]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[53]  Ulrich Wiesner,et al.  Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. , 2015, Journal of the American Chemical Society.

[54]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[55]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[56]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[57]  E. Handick,et al.  Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment , 2015 .

[58]  Jinsong Huang,et al.  Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process , 2015 .

[59]  Christopher J. Tassone,et al.  Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells , 2014 .

[60]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[61]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[62]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[63]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[64]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[65]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[66]  Kai Zhu,et al.  Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells , 2015 .

[67]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[68]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[69]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[70]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[71]  M. Toney,et al.  Chlorine in PbCl2-Derived Hybrid-Perovskite Solar Absorbers , 2015 .

[72]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[73]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[74]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[75]  David Cahen,et al.  Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. , 2014, Journal of the American Chemical Society.

[76]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[77]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[78]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[79]  J. Keum,et al.  Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions. , 2015, Journal of the American Chemical Society.