Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage

[1]  J. Tarascon,et al.  Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade , 2019, Carbon.

[2]  Biao Zhang,et al.  Exploring room- and low-temperature performance of hard carbon material in half and full Na-ion batteries , 2019, Electrochimica Acta.

[3]  Jiaqiang Huang,et al.  Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries , 2019, Energy & Environmental Science.

[4]  S. Mitra,et al.  Bio-derived mesoporous disordered carbon: An excellent anode in sodium-ion battery and full-cell lab prototype , 2019, Carbon.

[5]  Jiaqiang Huang,et al.  Correlation between the microstructure of carbon materials and their potassium ion storage performance , 2019, Carbon.

[6]  M. Carboni,et al.  Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodium‐Ion Batteries , 2019, ChemElectroChem.

[7]  M. Deschamps,et al.  Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material , 2019, Nature Communications.

[8]  I. Saadoune,et al.  Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries , 2018, Carbon.

[9]  K. Kubota,et al.  Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries , 2018 .

[10]  Yunhui Huang,et al.  Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. , 2018, Small.

[11]  Chenglong Zhao,et al.  Pre‐Oxidation‐Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance , 2018, Advanced Energy Materials.

[12]  Zhiyu Wang,et al.  Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries , 2018, Carbon.

[13]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[14]  C. Villevieille,et al.  Biowaste Lignin-Based Carbonaceous Materials as Anodes for Na-Ion Batteries , 2018 .

[15]  Xinxin Zhao,et al.  Elucidation of the Sodium‐Storage Mechanism in Hard Carbons , 2018 .

[16]  J. L. Amo,et al.  Layered P2–O3 sodium-ion cathodes derived from earth abundant elements , 2018 .

[17]  J. Bao,et al.  Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries , 2018 .

[18]  P. Bruce,et al.  Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. , 2018, Nature chemistry.

[19]  Jun Liu,et al.  Manipulating Adsorption–Insertion Mechanisms in Nanostructured Carbon Materials for High‐Efficiency Sodium Ion Storage , 2017 .

[20]  J. Tarascon,et al.  Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2- NaxMO2 electrodes , 2017 .

[21]  Stefano Passerini,et al.  Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries. , 2017, ChemSusChem.

[22]  Chao Wu,et al.  A High Power–High Energy Na3V2(PO4)2F3 Sodium Cathode: Investigation of Transport Parameters, Rational Design and Realization , 2017 .

[23]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[24]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[25]  J. Tarascon,et al.  Correlation Between Microstructure and Na Storage Behavior in Hard Carbon , 2016 .

[26]  Yong‐Sheng Hu,et al.  A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries , 2016 .

[27]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[28]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[29]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[30]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[31]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[32]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[33]  Laurence J Hardwick,et al.  In situ Raman study of lithium-ion intercalation into microcrystalline graphite. , 2014, Faraday discussions.

[34]  D. Mitlin,et al.  Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li , 2014 .

[35]  F. Kang,et al.  Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films , 2014 .

[36]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[37]  L. Wirtz,et al.  Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds , 2013, ACS nano.

[38]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[39]  Minoru Inaba,et al.  In situ Raman study on electrochemical Li intercalation into graphite , 1995 .