Truncation identities for the small polaron fusion hierarchy

We study a one-dimensional lattice model of interacting spinless fermions. This model is integrable for both periodic and open boundary conditions; the latter case includes the presence of Grassmann valued non-diagonal boundary fields breaking the bulk U(1) symmetry of the model. Starting from the embedding of this model into a graded Yang–Baxter algebra, an infinite hierarchy of commuting transfer matrices is constructed by means of a fusion procedure. For certain values of the coupling constant related to anisotropies of the underlying vertex model taken at roots of unity, this hierarchy is shown to truncate giving a finite set of functional equations for the spectrum of the transfer matrices. For generic coupling constants, the spectral problem is formulated in terms of a functional (or TQ-)equation which can be solved by Bethe ansatz methods for periodic and diagonal open boundary conditions. Possible approaches for the solution of the model with generic non-diagonal boundary fields are discussed.

[1]  G. Niccoli Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators , 2012, 1206.0646.

[2]  T. Wirth,et al.  Functional Bethe ansatz methods for the open XXX chain , 2010, 1009.1081.

[3]  H. Frahm,et al.  Non-diagonal boundary conditions for super spin chains , 2009, 0910.4029.

[4]  T. Wirth,et al.  Separation of variables in the open XXX chain , 2008, 0803.1776.

[5]  W. Galléas Functional relations from the Yang-Baxter algebra: Eigenvalues of the XXZ model with non-diagonal twisted and open boundary conditions , 2007, 0708.0009.

[6]  Rafael I. Nepomechie,et al.  A complete Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms , 2007, 0707.0653.

[7]  M. Kleban,et al.  Expanding F-theory , 2007, 0705.2020.

[8]  P. Baseilhac,et al.  Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory , 2007, hep-th/0703106.

[9]  Rafael I. Nepomechie,et al.  Exact solution of the open XXZ chain with general integrable boundary terms at roots of unity , 2006, hep-th/0605223.

[10]  Wen-Li Yang,et al.  T–Q relation and exact solution for the XYZ chain with general non-diagonal boundary terms , 2005, hep-th/0512154.

[11]  Rafael I. Nepomechie,et al.  Q-operator and T–Q relation from the fusion hierarchy , 2005, hep-th/0511134.

[12]  Rafael I. Nepomechie,et al.  Bethe ansatz derived from the functional relations of the open XXZ chain for new special cases , 2005, hep-th/0504124.

[13]  Hai-Qing Lin,et al.  Exact solution of XXZ spin chain with unparallel boundary fields , 2003 .

[14]  Rafael I. Nepomechie ADDENDUM: Addendum to 'Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms' , 2003, hep-th/0307095.

[15]  Rafael I. Nepomechie Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity , 2001, hep-th/0110116.

[16]  J. Gruneberg On the construction and solution of U q( gl(2,1; C)) -symmetric models , 2000 .

[17]  M. Wadati,et al.  Fermionic R-Operator Approach for the Small-Polaron Model with Open Boundary Condition. , 1999, cond-mat/9907474.

[18]  H. Frahm Doped Heisenberg chains: Spin-S generalizations of the supersymmetric t-J model , 1999, cond-mat/9904157.

[19]  H. Fan,et al.  Exact solution for small-polaron model with boundaries , 1999 .

[20]  U. Grimm,et al.  Lax pair formulation for a small‐polaron chain with integrable boundaries , 1998, cond-mat/9811089.

[21]  S. Murakami,et al.  Fermionic representations of integrable lattice systems , 1998, cond-mat/9805129.

[22]  H. Fan,et al.  Bethe Ansatz for the One-Dimensional Small-Polaron Model with Open Boundary Conditions , 1997, cond-mat/9711150.

[23]  A. Bracken,et al.  Integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons , 1997, cond-mat/9710141.

[24]  H. Frahm,et al.  LETTER TO THE EDITOR: A new algebraic Bethe ansatz for gl(2,1) invariant vertex models , 1997 .

[25]  Huan-Qiang Zhou Graded reflection equations and the one-dimensional small-polaron open chain , 1997 .

[26]  H. Frahm,et al.  Algebraic Bethe ansatz for gl(2, 1) invariant 36-vertex models , 1996, cond-mat/9604082.

[27]  Yu-kui Zhou Row transfer matrix functional relations for Baxter's eight-vertex and six-vertex models with open boundaries via more general reflection matrices , 1995, hep-th/9510095.

[28]  Z. Maassarani Uqosp(2,2) lattice models , 1994, hep-th/9407032.

[29]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[30]  Paul C. Bressloff,et al.  Low firing-rates in a compartmental model neuron , 1993 .

[31]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[32]  H. Vega,et al.  Boundary K-matrices for the six vertex and the n(2n-1)An-1 vertex models , 1992, hep-th/9211114.

[33]  Rafael I. Nepomechie,et al.  Fusion procedure for open chains , 1992 .

[34]  Rafael I. Nepomechie,et al.  Integrable open spin chains with nonsymmetric R-matrices , 1991 .

[35]  Rafael I. Nepomechie,et al.  Bethe ansatz solution of the Fateev-Zamolodchikov quantum spin chain with boundary terms , 1990 .

[36]  Lin-Jie Jiang,et al.  Hidden local gauge invariance in completely integrable lattice models of fermions , 1989 .

[37]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[38]  N. Reshetikhin,et al.  Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .

[39]  N. Reshetikhin,et al.  Exact solution of the Heisenberg XXZ model of spin s , 1986 .

[40]  F. Pu,et al.  Exact solution of a polaron model in one dimension , 1986 .

[41]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[42]  V. Makhankov,et al.  Non-linear effects in quasi-one-dimensional models of condensed matter theory , 1984 .

[43]  N. Reshetikhin,et al.  Quantum linear problem for the sine-Gordon equation and higher representations , 1983 .

[44]  N. Reshetikhin,et al.  Yang-Baxter equation and representation theory: I , 1981 .

[45]  V. Fateev,et al.  MODEL FACTORIZED S MATRIX AND AN INTEGRABLE HEISENBERG CHAIN WITH SPIN 1. (IN RUSSIAN) , 1980 .

[46]  L. Yakushevich,et al.  Elementary excitations in one-dimensional systems with resonance interaction , 1978 .