Semiconductor nanowire lasers

[1]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[2]  Song Jin,et al.  Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. , 2016, Nano letters.

[3]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[4]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[5]  C. Ning,et al.  A monolithic white laser. , 2015, Nature nanotechnology.

[6]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[7]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[8]  Z. Mi,et al.  An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band , 2015 .

[9]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[10]  Yi Yu,et al.  Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. , 2015, Journal of the American Chemical Society.

[11]  Jay B. Patel,et al.  Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. , 2015, Nano letters.

[12]  Tze Chien Sum,et al.  Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. , 2015, Nano letters.

[13]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[14]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[15]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[16]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[17]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[18]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[19]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[20]  Weng W. Chow,et al.  Emission properties of nanolasers during the transition to lasing , 2014, Light: Science & Applications.

[21]  Xiang Zhang,et al.  Explosives detection in a lasing plasmon nanocavity. , 2014, Nature nanotechnology.

[22]  K. Ding,et al.  Semiconductor Nanolasers (A Tutorial) , 2014, 2014 IEEE Photonics Society Summer Topical Meeting Series.

[23]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[24]  X. Liu,et al.  Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires. , 2014, Nano letters.

[25]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[26]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[27]  Limin Tong,et al.  Hybrid photon-plasmon nanowire lasers , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[28]  Tong Zhang,et al.  Development and application of surface plasmon polaritons on optical amplification , 2014 .

[29]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[30]  K. Ding,et al.  Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers , 2013 .

[31]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[32]  L. Tong,et al.  Freestanding nanowire ring laser , 2013 .

[33]  Q. Xiong,et al.  Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect. , 2013, Nano letters.

[34]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[35]  C. Ning,et al.  Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. , 2013, Nano letters.

[36]  C. Z. Ning,et al.  What is Laser Threshold? , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Manufacturing Board,et al.  Optics and Photonics: Essential Technologies for Our Nation , 2013 .

[38]  Gary Shambat,et al.  Single-cell photonic nanocavity probes , 2014, Photonics West - Biomedical Optics.

[39]  X. Liu,et al.  Wavelength Tunable CdSe Nanowire Lasers Based on the Absorption‐Emission‐Absorption Process , 2012, Advanced materials.

[40]  K. Ding,et al.  An electrical injection metallic cavity nanolaser with azimuthal polarization , 2013 .

[41]  P. Yang,et al.  Cleaved-coupled nanowire lasers , 2013, Proceedings of the National Academy of Sciences.

[42]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[43]  Limin Tong,et al.  Asymmetric light propagation in composition-graded semiconductor nanowires , 2012, Scientific Reports.

[44]  Jeremy B. Wright,et al.  Single-mode GaN nanowire lasers. , 2012, Optics express.

[45]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[46]  F. Barany,et al.  EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection , 2012 .

[47]  Martin T. Hill,et al.  Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection , 2012 .

[48]  C. Ning,et al.  Composition and Bandgap‐Graded Semiconductor Alloy Nanowires , 2012, Advances in Materials.

[49]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[50]  James J. Coleman,et al.  Advances in semiconductor lasers , 2012 .

[51]  C. Ning Chapter 12 - Semiconductor Nanowire Lasers , 2012 .

[52]  Hark Hoe Tan,et al.  Growth and properties of III–V compound semiconductor heterostructure nanowires , 2012 .

[53]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[54]  Baolai Liang,et al.  Bottom-up photonic crystal lasers. , 2011, Nano letters.

[55]  C. Ning,et al.  Influence of supersaturation and spontaneous catalyst formation on the growth of PbS wires: toward a unified understanding of growth modes. , 2011, ACS nano.

[56]  Pallab Bhattacharya,et al.  Room temperature ultralow threshold GaN nanowire polariton laser. , 2011, Physical review letters.

[57]  L. Tong,et al.  Single mode lasing in coupled nanowires , 2011 .

[58]  D. Vanmaekelbergh,et al.  ZnO nanowire lasers. , 2011, Nanoscale.

[59]  Jonathan J. Wierer,et al.  Four-color laser white illuminant demonstrating high color-rendering quality. , 2011, Optics express.

[60]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  C. Ning,et al.  Semiconductor Alloy Nanowires and Nanobelts With Tunable Optical Properties , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[62]  C. Jagadish,et al.  Tailoring GaAs, InAs, and InGaAs Nanowires for Optoelectronic Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  Martin T. Hill,et al.  Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K , 2011 .

[64]  Martin T. Hill,et al.  A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays. , 2011, Nano letters.

[65]  Limin Tong,et al.  Single-nanowire single-mode laser. , 2011, Nano letters.

[66]  L. Tong,et al.  Spatial bandgap engineering along single alloy nanowires. , 2011, Journal of the American Chemical Society.

[67]  C. Chang-Hasnain,et al.  Nanolasers Grown on Silicon , 2011, 1101.3305.

[68]  Pallab Bhattacharya,et al.  Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon , 2011 .

[69]  D. Pile View from... IEEE photonics society annual meeting: Smaller is better , 2010 .

[70]  Martin T. Hill,et al.  Status and prospects for metallic and plasmonic nano-lasers [Invited] , 2010 .

[71]  A. Zunger,et al.  Wide InP nanowires with wurtzite/zincblende superlattice segments are type-II whereas narrower nanowires become type-I: an atomistic pseudopotential calculation. , 2010, Nano letters.

[72]  D. Bimberg,et al.  Metal-cavity surface-emitting microlaser at room temperature , 2010 .

[73]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[74]  C. Ning,et al.  Peculiar features of confinement factors in a metal-semiconductor waveguide , 2010 .

[75]  Ming C. Wu,et al.  Subwavelength Metal-optic Semiconductor Nanopatch Lasers References and Links , 2022 .

[76]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[77]  C. Ning,et al.  Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. , 2010, ACS nano.

[78]  Federico Capasso,et al.  Optically pumped nanowire lasers: invited review , 2010 .

[79]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[80]  C. Ning,et al.  Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. , 2009, Journal of the American Chemical Society.

[81]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[82]  C. Ning,et al.  Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure , 2009, 0906.1270.

[83]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[84]  Peidong Yang,et al.  Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. , 2009, Journal of the American Chemical Society.

[85]  Ruibin Liu,et al.  Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. , 2009, Nano letters.

[86]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[87]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[88]  Fang Qian,et al.  Modal characteristics in a single-nanowire cavity with a triangular cross section. , 2008, Nano letters.

[89]  C. Z. Ning,et al.  Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation. , 2008, Nano letters.

[90]  Marko Loncar,et al.  Ultra-high quality factor optical resonators based on semiconductor nanowires. , 2008, Optics express.

[91]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[92]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[93]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[94]  Shuji Nakamura,et al.  Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes , 2008 .

[95]  A. Tredicucci,et al.  Vertically emitting microdisk lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[96]  Sung-Mo Kang,et al.  Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts , 2008 .

[97]  S. Aloni,et al.  Complete composition tunability of InGaN nanowires using a combinatorial approach. , 2007, Nature materials.

[98]  Fang Qian,et al.  Semiconductor Nanowire Lasers , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[99]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[100]  S. T. Lee,et al.  Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons , 2007 .

[101]  A. Pan,et al.  Fabrication and Red-Color Lasing of Individual Highly Uniform Single-Crystal CdSe Nanobelts , 2007 .

[102]  Song Jin,et al.  Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. , 2007, Nano letters.

[103]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[104]  Shui-Tong Lee,et al.  Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons , 2007 .

[105]  C. Ning,et al.  Band structure and optical properties of wurtzite semiconductor nanotubes , 2007 .

[106]  Limin Tong,et al.  Modeling of evanescent coupling between two parallel optical nanowires. , 2007, Applied optics.

[107]  A. V. Maslov,et al.  Size reduction of a semiconductor nanowire laser by using metal coating , 2007, SPIE OPTO.

[108]  L. Voon,et al.  Electronic structure of free-standing InP and InAs nanowires , 2006 .

[109]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[110]  Zhong Lin Wang,et al.  High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. , 2006, The journal of physical chemistry. B.

[111]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[112]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[113]  Elias Towe,et al.  Nanowire lasers with distributed-Bragg-reflector mirrors , 2006 .

[114]  F. Léonard,et al.  Size-dependent effects on electrical contacts to nanotubes and nanowires. , 2006, Physical review letters.

[115]  Margit Zacharias,et al.  Semiconductor nanowires: from self-organization to patterned growth. , 2006, Small.

[116]  Mahendra K. Sunkara,et al.  Near-infrared semiconductor subwavelength-wire lasers , 2006 .

[117]  Peidong Yang,et al.  Semiconductor nanowire ring resonator laser. , 2006, Physical review letters.

[118]  C. Ning,et al.  Distribution of optical emission between guided modes and free space in a semiconductor nanowire , 2006 .

[119]  Federico Capasso,et al.  Hybrid single-nanowire photonic crystal and microresonator structures. , 2006, Nano letters.

[120]  Jelena Vucković,et al.  Photonic crystal nanocavity array laser. , 2005, Optics express.

[121]  A. Pan,et al.  Color-tunable photoluminescence of alloyed CdS(x)Se(1-x) nanobelts. , 2005, Journal of the American Chemical Society.

[122]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[123]  C. Ning,et al.  Radius-dependent polarization anisotropy in semiconductor nanowires , 2005 .

[124]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[125]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[126]  C. Ning,et al.  Band structure and optical absorption of GaN nanowires grown along the c axis , 2005 .

[127]  Peidong Yang,et al.  Semiconductor nanowires for subwavelength photonics integration. , 2005, The journal of physical chemistry. B.

[128]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[129]  Donald J. Sirbuly,et al.  Optical routing and sensing with nanowire assemblies , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[130]  A. Greytak,et al.  Core–Shell Nanowire Light‐Emitting Diodes , 2005 .

[131]  K. Ho,et al.  Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays , 2005 .

[132]  Charles M. Lieber,et al.  Lasing in single cadmium sulfide nanowire optical cavities. , 2004, Nano letters.

[133]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[134]  Hongqi Xu,et al.  Giant polarization anisotropy in optical transitions of free-standing InP nanowires , 2004 .

[135]  C. Ning,et al.  Modal gain in a semiconductor nanowire laser with anisotropic bandstructure , 2004, IEEE Journal of Quantum Electronics.

[136]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[137]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[138]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[139]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[140]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[141]  C. Ning,et al.  Far-field emission of a semiconductor nanowire laser. , 2004, Optics letters.

[142]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[143]  H. Yan,et al.  ZnO Nanoribbon Microcavity Lasers , 2003 .

[144]  Lars Samuelson,et al.  Self-forming nanoscale devices , 2003 .

[145]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[146]  Cun-Zheng Ning,et al.  Reflection of guided modes in a semiconductor nanowire laser , 2003 .

[147]  P. Yang,et al.  Self-Organized GaN Quantum Wire UV Lasers , 2003 .

[148]  Peidong Yang,et al.  Dendritic nanowire ultraviolet laser array. , 2003, Journal of the American Chemical Society.

[149]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[150]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[151]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[152]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[153]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[154]  P. Yang,et al.  Single Nanowire Lasers. , 2002 .

[155]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[156]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[157]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[158]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[159]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[160]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[161]  T. Katsuyama,et al.  The role of gold clusters in semiconductor microstructure fabrication , 1999 .

[162]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[163]  H. Ruda,et al.  Influence of contacts on the conductivity of thin wires , 1998 .

[164]  Carlo Sirtori,et al.  Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons , 1998 .

[165]  Kent D. Choquette,et al.  Vertical-cavity surface emitting lasers: moving from research to manufacturing , 1997, Proc. IEEE.

[166]  Laxmaiah Manchikanti,et al.  An Invited Review , 1995 .

[167]  Karlsson,et al.  Definition of a laser threshold. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[168]  N. Dutta,et al.  Semiconductor Lasers , 1993 .

[169]  N. Dutta,et al.  Infrared and Visible Semiconductor Lasers , 1993 .

[170]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[171]  Sercel,et al.  Polarization dependence of optical absorption and emission in quantum wires. , 1991, Physical review. B, Condensed matter.

[172]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[173]  M. Koguchi,et al.  Heteroepitaxial ultrafine wire‐like growth of InAs on GaAs substrates , 1991 .

[174]  R. R. Larson,et al.  Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide , 1974 .

[175]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[176]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[177]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[178]  Albert Einstein,et al.  Strahlungs-Emission und ­Absorption nach der Quantentheorie , 1916 .