Learnability of the output distributions of local quantum circuits

M. Hinsche, M. Ioannou, A. Nietner, J. Haferkamp, 2 Y. Quek, 1 D. Hangleiter, 1 J.-P. Seifert, 6 J. Eisert, 2, 7 and R. Sweke Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany Information Systems Laboratory, Stanford University, Stanford, CA 94305, USA Joint Center for Quantum Information and Computer Science (QuICS), University of Maryland and NIST, College Park, MD 20742, USA Electrical Engineering and Computer Science, TU Berlin, D-10587 Berlin, Germany FhG SIT, D-64295 Darmstadt, Germany Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany

[1]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[2]  L-M Duan,et al.  A quantum machine learning algorithm based on generative models , 2018, Science Advances.

[3]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  U. Vazirani,et al.  On the complexity and verification of quantum random circuit sampling , 2018, Nature Physics.

[5]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[6]  Vitaly Feldman,et al.  A General Characterization of the Statistical Query Complexity , 2016, COLT.

[7]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Jens Eisert,et al.  Sample Complexity of Device-Independently Certified "Quantum Supremacy". , 2018, Physical review letters.

[9]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[10]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[11]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[12]  Andrea Rocchetto,et al.  Stabiliser states are efficiently PAC-learnable , 2017, Quantum Inf. Comput..

[13]  Jean-Pierre Seifert,et al.  On the Quantum versus Classical Learnability of Discrete Distributions , 2021, Quantum.