Learning Determinantal Point Processes
暂无分享,去创建一个
[1] J. Besag,et al. Spatial Statistics and Bayesian Computation , 1993 .
[2] Avner Magen,et al. Near Optimal Dimensionality Reductions That Preserve Volumes , 2008, APPROX-RANDOM.
[3] Peter Bürgisser. The Complexity of Immanants , 2000 .
[4] R. Swendsen. Dynamics of random sequential adsorption , 1981 .
[5] R. Waagepetersen,et al. Modern Statistics for Spatial Point Processes * , 2007 .
[6] Vahab S. Mirrokni,et al. Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.
[7] D. J. Strauss. A model for clustering , 1975 .
[8] Charles L. Wayne. Multilingual Topic Detection and Tracking: Successful Research Enabled by Corpora and Evaluation , 2000, LREC.
[9] R. Wolpert,et al. Perfect simulation and moment properties for the Matérn type III process , 2010 .
[10] Yousef Saad,et al. A Probing Method for Computing the Diagonal of the Matrix Inverse ∗ , 2010 .
[11] Vladimir Kolmogorov,et al. What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] Dragomir R. Radev,et al. LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..
[13] T. Shirai,et al. Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .
[14] Persi Diaconis,et al. Immanants and Finite Point Processes , 2000, J. Comb. Theory A.
[15] Gunnar Rätsch,et al. Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..
[16] R. Lyons. Determinantal probability measures , 2002, math/0204325.
[17] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[18] Peter Bürgisser,et al. The Computational Complexity of Immanants , 2000, SIAM J. Comput..
[19] Jesper Møller,et al. Bayesian Analysis of Markov Point Processes , 2006 .
[20] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[21] Luis Rademacher,et al. Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[22] L. Einkemmer. Quasi-Monte Carlo methods , 2010 .
[23] Antonio Torralba,et al. Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.
[24] James Allan,et al. Temporal summaries of new topics , 2001, SIGIR '01.
[25] Vahab S. Mirrokni,et al. Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[26] J. L. Jensen,et al. Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .
[27] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[28] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[29] Shankar Kumar,et al. Minimum Bayes-Risk Word Alignments of Bilingual Texts , 2002, EMNLP.
[30] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[31] Tommi S. Jaakkola,et al. New Outer Bounds on the Marginal Polytope , 2007, NIPS.
[32] P. Diggle,et al. On parameter estimation for pairwise interaction point processes , 1994 .
[33] A. Baddeley,et al. Area-interaction point processes , 1993 .
[34] R. Cowan. An introduction to the theory of point processes , 1978 .
[35] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[36] A. Soshnikov,et al. Janossy Densities. I. Determinantal Ensembles , 2002, math-ph/0212063.
[37] Carlos Guestrin,et al. A Note on the Budgeted Maximization of Submodular Functions , 2005 .
[38] J. Clarke,et al. Global inference for sentence compression : an integer linear programming approach , 2008, J. Artif. Intell. Res..
[39] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[40] P. Diggle,et al. A nonparametric estimator for pairwise-interaction point processes , 1987 .
[41] P. Diaconis,et al. On adding a list of numbers (and other one-dependent determinantal processes) , 2009, 0904.3740.
[42] Martin A. Fischler,et al. The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.
[43] L. Finegold,et al. Maximum density of random placing of membrane particles , 1979, Nature.
[44] A. Barvinok. Computational complexity of immanents and representations of the full linear group , 1990 .
[45] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[46] Jeffrey D. Scargle,et al. An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.
[47] Andrew McCallum,et al. Automating the Construction of Internet Portals with Machine Learning , 2000, Information Retrieval.
[48] Gregory F. Cooper,et al. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..
[49] K. Johansson. The Arctic circle boundary and the airy process , 2003, math/0306216.
[50] Noah A. Smith,et al. Summarization with a Joint Model for Sentence Extraction and Compression , 2009, ILP 2009.
[51] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[52] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[53] Michael Luby,et al. Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..
[54] Dafna Shahaf,et al. Connecting the dots between news articles , 2010, IJCAI.
[55] Dafna Shahaf,et al. Trains of thought: generating information maps , 2012, WWW.
[56] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[57] Daniel P. Huttenlocher,et al. Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.
[58] D. Stoyan,et al. On One of Matérn's Hard‐core Point Process Models , 1985 .
[59] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[60] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[61] Y. Ogata,et al. Likelihood Analysis of Spatial Point Patterns , 1984 .
[62] B. Ripley. Statistical inference for spatial processes , 1990 .
[63] J. Besag,et al. Point process limits of lattice processes , 1982, Journal of Applied Probability.
[64] T. Shirai,et al. Fermion Process and Fredholm Determinant , 2000 .
[65] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[66] Shankar Kumar,et al. Minimum Bayes-Risk Decoding for Statistical Machine Translation , 2004, NAACL.
[67] J. Feder. Random sequential adsorption , 1980 .
[68] Ben Taskar,et al. Structured Determinantal Point Processes , 2010, NIPS.
[69] Ben Taskar,et al. Adaptive pose priors for pictorial structures , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[70] Andrew McCallum,et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.
[71] Jure Leskovec,et al. Meme-tracking and the dynamics of the news cycle , 2009, KDD.
[72] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[73] Andrea Vedaldi,et al. Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.
[74] A. Okounkov,et al. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.
[75] M. L. Mehta,et al. ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .
[76] O. Macchi. The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.
[77] Hui Lin,et al. Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.
[78] Chin-Yew Lin,et al. ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.
[79] Guy Lapalme,et al. HEXTAC: the Creation of a Manual Extractive Run , 2009, TAC.
[80] Yair Weiss,et al. Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..
[81] Jean-Luc Brylinski,et al. Complexity and Completeness of Immanants , 2003, ArXiv.
[82] Ben Taskar,et al. Learning associative Markov networks , 2004, ICML.
[83] Zhifei Li,et al. First- and Second-Order Expectation Semirings with Applications to Minimum-Risk Training on Translation Forests , 2009, EMNLP.
[84] Hui Lin,et al. Learning Mixtures of Submodular Shells with Application to Document Summarization , 2012, UAI.
[85] G. Olshanski,et al. Distributions on Partitions, Point Processes,¶ and the Hypergeometric Kernel , 1999, math/9904010.
[86] M. Tanemura. On random complete packing by discs , 1979 .
[87] Y. Peres,et al. Determinantal Processes and Independence , 2005, math/0503110.
[88] A. Okounkov. Infinite wedge and random partitions , 1999, math/9907127.
[89] Ted J. Case,et al. Overdispersion of ant colonies: a test of hypotheses , 1986, Oecologia.
[90] K. Johansson. Random matrices and determinantal processes , 2005, math-ph/0510038.
[91] Solomon Eyal Shimony,et al. Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..
[92] Hiroshi Ishikawa,et al. Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[93] ChengXiang Zhai,et al. Discovering evolutionary theme patterns from text: an exploration of temporal text mining , 2005, KDD '05.
[94] B. Ripley,et al. Markov Point Processes , 1977 .
[95] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[96] I. Sobol,et al. On quasi-Monte Carlo integrations , 1998 .
[97] Y. Ogata,et al. Estimation of Interaction Potentials of Marked Spatial Point Patterns Through the Maximum Likelihood Method , 1985 .
[98] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[99] Judea Pearl,et al. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.
[100] Fernando Pereira,et al. Structured Learning with Approximate Inference , 2007, NIPS.
[101] Ashraf M. Abdelbar,et al. Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..
[102] Maurice Queyranne,et al. An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..
[103] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.
[104] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[105] J. Ramsden. Review of new experimental techniques for investigating random sequential adsorption , 1993 .
[106] Olle Häggström,et al. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes , 1999 .
[107] Michael R. Harwell,et al. Computing Elementary Symmetric Functions and Their Derivatives: A Didactic , 1996 .
[108] Michael I. Jordan,et al. Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.
[109] Yan Zhang,et al. Evolutionary timeline summarization: a balanced optimization framework via iterative substitution , 2011, SIGIR.
[110] K. Johansson. Determinantal Processes with Number Variance Saturation , 2004, math/0404133.
[111] John M. Conroy. Left-Brain/Right-Brain Multi-Document Summarization , 2004 .
[112] Malik Magdon-Ismail,et al. On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..
[113] G. Grimmett. A THEOREM ABOUT RANDOM FIELDS , 1973 .
[114] R. Grone,et al. An algorithm for the second immanant , 1984 .
[115] Vaibhava Goel,et al. Minimum Bayes-risk automatic speech recognition , 2000, Comput. Speech Lang..
[116] John F. Canny,et al. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[117] K. Johansson. Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.
[118] David G. Lowe,et al. Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[119] R. Wolpert,et al. Likelihood-based inference for Matérn type-III repulsive point processes , 2009, Advances in Applied Probability.
[120] Hai Leong Chieu,et al. Query based event extraction along a timeline , 2004, SIGIR '04.
[121] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[122] Hoa Trang Dang,et al. Overview of DUC 2005 , 2005 .
[123] David Jensen,et al. TimeMines: Constructing Timelines with Statistical Models of Word Usage , 2000, KDD 2000.
[124] Yair Weiss,et al. Approximate Inference and Protein-Folding , 2002, NIPS.
[125] N. O'Connell,et al. PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .
[126] E. Rains,et al. Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.
[127] B. Matérn. Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .
[128] T. Shirai,et al. Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties , 2003 .
[129] Ani Nenkova,et al. A compositional context sensitive multi-document summarizer: exploring the factors that influence summarization , 2006, SIGIR.
[130] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..