Epidermal growth factor receptor-dependent activation of Gab1 is involved in ErbB-2-mediated mammary tumor progression

[1]  A. Lenferink,et al.  Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-alpha bigenic mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Fiona M. Watt,et al.  The EGF Receptor Provides an Essential Survival Signal for SOS-Dependent Skin Tumor Development , 2000, Cell.

[3]  R. Cardiff,et al.  Elevated expression of activated forms of Neu/ErbB‐2 and ErbB‐3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer , 1999, The EMBO journal.

[4]  S. Bull,et al.  neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  R. Cardiff,et al.  Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice , 1996, Molecular and cellular biology.

[6]  Y. Yarden,et al.  A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor , 1996, Molecular and cellular biology.

[7]  R. Cardiff,et al.  Activated neu Induces Rapid Tumor Progression (*) , 1996, The Journal of Biological Chemistry.

[8]  Y. Yarden,et al.  ErbB‐2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. , 1996, The EMBO journal.

[9]  G. Mann,et al.  A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  N. Copeland,et al.  The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. , 1994, Genes & development.

[11]  W. Muller,et al.  Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity , 1994, Molecular and cellular biology.

[12]  G. Plowman,et al.  Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Y. Yarden,et al.  Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. , 1990, Biochemistry.

[14]  R. Palmiter,et al.  Overexpression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast , 1990, Cell.

[15]  B. Hogan,et al.  Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice , 1990, Cell.

[16]  M. Kraus,et al.  Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  W Godolphin,et al.  Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. , 1989, Science.

[18]  P. Leder,et al.  Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene , 1988, Cell.

[19]  D. Stern,et al.  EGF‐stimulated tyrosine phosphorylation of p185neu: a potential model for receptor interactions. , 1988, The EMBO journal.

[20]  W. McGuire,et al.  Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. , 1987, Science.