Maximum Maximum of Martingales Given Marginals

We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset and statically trade European call options for all possible strikes and finitely-many maturities. We present a general duality result which converts this problem into a min-max calculus of variations problem where the Lagrange multipliers correspond to the static part of the hedge. Following Galichon, Henry-Labordere and Touzi \cite{ght}, we apply stochastic control methods to solve it explicitly for Lookback options with a non-decreasing payoff function. The first step of our solution recovers the extended optimal properties of the Azema-Yor solution of the Skorokhod embedding problem obtained by Hobson and Klimmek \cite{hobson-klimmek} (under slightly different conditions). The two marginal case corresponds to the work of Brown, Hobson and Rogers \cite{brownhobsonrogers}. The robust superhedging cost is complemented by (simple) dynamic trading and leads to a class of semi-static trading strategies. The superhedging property then reduces to a functional inequality which we verify independently. The optimality follows from existence of a model which achieves equality which is obtained in Ob\loj and Spoida \cite{OblSp}.

[1]  R. P. Kertz,et al.  Stochastic and convex orders and lattices of probability measures, with a martingale interpretation , 1992 .

[2]  Bruno Bouchard,et al.  Arbitrage and duality in nondominated discrete-time models , 2013, 1305.6008.

[3]  Jan Obl'oj,et al.  An Iterated Az\'{e}ma-Yor Type Embedding for Finitely Many Marginals , 2013, 1304.0368.

[4]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[5]  Xiaolu Tan,et al.  Optimal transportation under controlled stochastic dynamics , 2013, 1310.0939.

[6]  J. Obłój The Skorokhod embedding problem and its offspring , 2004, math/0401114.

[7]  J. F. Bonnans,et al.  A Model-Free No-arbitrage Price Bound for Variance Options , 2013 .

[8]  A. Galichon,et al.  A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options , 2014, 1401.3921.

[9]  D. Hobson,et al.  Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping , 2007, math/0702173.

[10]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[11]  P. Protter,et al.  ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .

[12]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[13]  Leonard Rogers,et al.  Robust Hedging of Barrier Options , 2001 .

[14]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[15]  N. Touzi,et al.  On the Robust superhedging of measurable claims , 2013, 1302.1850.

[16]  Jan Ob lój The Skorokhod embedding problem and its offspring ∗ , 2004 .

[17]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[18]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[19]  M. Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance and Stochastics.

[20]  David Hobson,et al.  Robust hedging of the lookback option , 1998, Finance Stochastics.

[21]  Nizar Touzi,et al.  A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.

[22]  David Hobson,et al.  Local martingales, bubbles and option prices , 2005, Finance Stochastics.

[23]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[24]  Jan Ob The Skorokhod embedding problem and its ospring , 2004 .

[25]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[26]  R. P. Kertz,et al.  Martingales with given maxima and terminal distributions , 1990 .

[27]  Lester E. Dubins,et al.  On the distribution of maxima of martingales , 1978 .

[28]  Jan Oblój,et al.  Robust pricing and hedging of double no-touch options , 2009, Finance Stochastics.

[29]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[30]  S. Peng G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty , 2007, 0711.2834.

[31]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[32]  Maximising functionals of the joint law of the maximum and terminal value in the Skorokhod embedding problem , 2010 .

[33]  L. Rogers,et al.  The maximum maximum of a martingale constrained by an intermediate law , 2001 .

[34]  D. Blackwell,et al.  A converse to the dominated convergence theorem , 1963 .

[35]  W. Schachermayer,et al.  A trajectorial interpretation of Doob's martingale inequalities , 2012, 1202.0447.

[36]  Marcel Nutz Pathwise construction of stochastic integrals , 2011, 1108.2981.

[37]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[38]  Jean Jacod,et al.  Local martingales and the fundamental asset pricing theorems in the discrete-time case , 1998, Finance Stochastics.

[39]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[40]  Paul A. Samuelson,et al.  Rational Theory of Warrant Pricing , 2015 .

[41]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[42]  J. Azéma,et al.  Une solution simple au probleme de Skorokhod , 1979 .

[43]  A simple proof of a theorem of blackwell & dubins on the maximum of a uniformly integrable martingale , 1988 .

[44]  J. Azéma,et al.  Le probleme de skorokhod : complements a l'expose precedent , 1979 .

[45]  H. Föllmer,et al.  Robust Preferences and Robust Portfolio Choice , 2009 .

[46]  Marcel Nutz,et al.  Superreplication under Volatility Uncertainty for Measurable Claims , 2012, 1208.6486.

[47]  M. Yor,et al.  Making Markov martingales meet marginals: with explicit constructions , 2002 .

[48]  Alexander M. G. Cox,et al.  Root's barrier: Construction, optimality and applications to variance options. , 2011, 1104.3583.

[49]  David Hobson,et al.  The maximum maximum of a martingale , 1998 .

[50]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[51]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .