Porous molecular networks formed by the self-assembly of positively-charged trigonal building blocks at the liquid/solid interfaces.

Tris-(2-hydroxybenzylidene)triaminoguanidinium salts having six alkyl chains with proper spacing served as new molecular building blocks for the formation of porous honeycomb networks by van der Waals interaction between interdigitated alkyl chains at the liquid/graphite interfaces.

[1]  M. van der Auweraer,et al.  Temperature-induced structural phase transitions in a two-dimensional self-assembled network. , 2013, Journal of the American Chemical Society.

[2]  O. Magnussen,et al.  Photoswitching of Azobenzene-Functionalized Molecular Platforms on Au Surfaces , 2012 .

[3]  S. Höger,et al.  Nanopatterning by molecular polygons. , 2011, Journal of the American Chemical Society.

[4]  L. Douillard,et al.  Solution-growth kinetics and thermodynamics of nanoporous self-assembled molecular monolayers. , 2011, The Journal of chemical physics.

[5]  S. De Feyter,et al.  Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der Waals interaction. , 2010, Chemical communications.

[6]  Yuanyuan Guo,et al.  The site-selective molecular recognition of ternary architectures by using supramolecular nanoporous networks at a liquid-solid interface. , 2010, Chemistry, an Asian journal.

[7]  L. Wan,et al.  2D assembly of metallacycles on HOPG by shape-persistent macrocycle templates. , 2010, Journal of the American Chemical Society.

[8]  Gebo Pan,et al.  Anion adsorption driving 2D crystallization of C60 at the ionic liquid [bmim][PF6]/Au(1 1 1) interface , 2009 .

[9]  S. De Feyter,et al.  Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. , 2009, Angewandte Chemie.

[10]  M. Persson,et al.  Tailoring bicomponent supramolecular nanoporous networks: phase segregation, polymorphism, and glasses at the solid-liquid interface. , 2009, Journal of the American Chemical Society.

[11]  D. Bonifazi,et al.  Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. , 2009, Chemistry.

[12]  W. Heckl,et al.  Carboxylic acids: versatile building blocks and mediators for two-dimensional supramolecular self-assembly. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  Chen Wang,et al.  Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy , 2009 .

[14]  J. Barth,et al.  High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. , 2009, Journal of the American Chemical Society.

[15]  O. Magnussen,et al.  Mounting freestanding molecular functions onto surfaces: the platform approach. , 2009, Journal of the American Chemical Society.

[16]  Lorenz Kampschulte,et al.  Thermodynamical equilibrium of binary supramolecular networks at the liquid-solid interface. , 2008, Journal of the American Chemical Society.

[17]  M. van der Auweraer,et al.  One building block, two different supramolecular surface-confined patterns: concentration in control at the solid-liquid interface. , 2008, Angewandte Chemie.

[18]  F. D. De Schryver,et al.  Synthesis of dehydrobenzo[18]annulene derivatives and formation of self-assembled monolayers: implications of core size on alkyl chain interdigitation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[20]  F. D. De Schryver,et al.  Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. , 2006, Journal of the American Chemical Society.

[21]  L. Douillard,et al.  Single-molecule dynamics in a self-assembled 2D molecular sieve. , 2006, Nano letters.

[22]  K. Kern,et al.  Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems , 2004, Nature materials.

[23]  N. Oxtoby,et al.  Controlling molecular deposition and layer structure with supramolecular surface assemblies , 2003, Nature.

[24]  L. Wan,et al.  The two-dimensional self-assembled n-alkoxy-substituted stilbenoid compounds and triphenylenes studied by scanning tunneling microscopy , 2003 .

[25]  A. Yamagishi,et al.  Electrochemical and in situ STM studies of anomalous phosphate adsorption induced on Zn UPD at Au(111) in the presence of halide ions in aqueous phosphate solutions , 2002 .

[26]  R. Robson,et al.  A New Class of Easily Obtained Carbonate-Related μ3 -Ligands and a Protein-Sized Doughnut-Shaped Coordination Oligomer. , 2000, Angewandte Chemie.

[27]  S. Buchholz,et al.  Commensurability and Mobility in Two-Dimensional Molecular Patterns on Graphite , 1991, Science.

[28]  J. Brédas,et al.  A theoretical approach to the STM imaging of adsorbates on the graphite surface , 1991 .

[29]  J. Reilly,et al.  New Compounds. Some Aldehydic Hydrazones of Triaiminoguanidine , 1952 .

[30]  D. Bléger,et al.  Structure and Epitaxial Registry on Graphite of a Series of Nanoporous Self-Assembled Molecular Monolayers , 2010 .

[31]  Iris M. Oppel,et al.  Rational design of a double-walled tetrahedron containing two different C3-symmetric ligands. , 2008, Angewandte Chemie.

[32]  I. Müller,et al.  A New Ligand for the Formation of Triangular Building Blocks in Supramolecular Chemistry , 2005 .