Chapter 8 – Nanotechnology safety in the construction and infrastructure industries

[1]  Pu Xincheng Super-High-Strength High Performance Concrete , 2017 .

[2]  Konstantin Sobolev,et al.  How Nanotechnology Can Change the Concrete World , 2014 .

[3]  Pan Ming-zhu,et al.  Flammability of nano silicon dioxide–wood fiber–polyethylene composites , 2013 .

[4]  G. Johnes,et al.  Performance trends in the construction industry worldwide: an overview of the turn of the century , 2013 .

[5]  Bao Lei,et al.  Solution‐Processed TiO2 Nanoparticles as the Window Layer for CuIn(S,Se)2 Devices , 2012 .

[6]  Manu Venugopal,et al.  Nanotechnology and Its Impact on Construction: Bridging the Gap between Researchers and Industry Professionals , 2012 .

[7]  L. Yin,et al.  ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. , 2011, Biomedical and environmental sciences : BES.

[8]  B. Timofeev,et al.  Degradation of structural steel properties under the prolonged influence of operating temperatures , 2011 .

[9]  Young-Bin Park,et al.  Smart Materials and Structures Based on Carbon Nanotube Composites , 2011 .

[10]  Youn-Joo An,et al.  Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. , 2011, The Science of the total environment.

[11]  N. Chandrasekaran,et al.  Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. , 2011 .

[12]  T. Tang,et al.  Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation , 2010 .

[13]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[14]  Pedro J. J. Alvarez,et al.  Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. , 2010, ACS nano.

[15]  Wei Bai,et al.  Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism , 2010 .

[16]  Soo-Jin Choi,et al.  Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. , 2010, Journal of nanoscience and nanotechnology.

[17]  Craig A. Poland,et al.  Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma , 2010, Particle and Fibre Toxicology.

[18]  James Beaudoin,et al.  Cement and Concrete Nanoscience and Nanotechnology , 2010, Materials.

[19]  Vicki Stone,et al.  Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics , 2009, Particle and Fibre Toxicology.

[20]  H. Karlsson,et al.  Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. , 2009, Toxicology letters.

[21]  L. Forró,et al.  Cellular toxicity of TiO2-based nanofilaments. , 2009, ACS nano.

[22]  A. Sev How can the construction industry contribute to sustainable development? A conceptual framework , 2009 .

[23]  F. Girardi Studies on concrete degradation in aggressive environment and development of protective system , 2009 .

[24]  Baoshan Xing,et al.  Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. , 2009, Environmental pollution.

[25]  Zhi Pan,et al.  Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. , 2009, Small.

[26]  Ü. Erdoğan,et al.  Flame retardancy behaviors and structural properties of polypropylene/nano‐SiO2 composite textile filaments , 2009 .

[27]  Christofer Leygraf,et al.  Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. , 2009, Small.

[28]  K. Kasemets,et al.  Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, The Science of the total environment.

[29]  Gamolwan Tumcharern,et al.  Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms , 2009 .

[30]  V. Sharma,et al.  Silver nanoparticles: green synthesis and their antimicrobial activities. , 2009, Advances in colloid and interface science.

[31]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[32]  H. Karlsson,et al.  Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. , 2008, Chemical research in toxicology.

[33]  J. Nagy,et al.  Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. , 2008, Chemical research in toxicology.

[34]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[35]  Sungho Jin,et al.  Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. , 2007, Biomaterials.

[36]  Peter Wick,et al.  Reviewing the environmental and human health knowledge base of carbon nanotubes. , 2007, Ciencia & saude coletiva.

[37]  H. Jeng,et al.  Toxicity of Metal Oxide Nanoparticles in Mammalian Cells , 2006, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[38]  Sung-Hoon Ahn,et al.  Fabrication of radar absorbing structure (RAS) using GFR-nano composite and spring-back compensation of hybrid composite RAS shells , 2006 .

[39]  J. Gearhart,et al.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[40]  Wang Tao,et al.  STUDY ON FIRED BRICKS WITH REPLACING CLAY BY FLY ASH IN HIGH VOLUME RATIO , 2005 .

[41]  G. Fantozzi,et al.  Thermomechanical Behavior of High‐Alumina Refractory Castables with Synthetic Spinel Additions , 2004 .

[42]  Wenzhong Zhu,et al.  Application of nanotechnology in construction , 2004 .

[43]  M. Tsai Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance , 2004 .

[44]  James J. Beaudoin,et al.  Carbon Nanotubes and their Application in the Construction Industry , 2004 .

[45]  Bernhard A. Schrefler,et al.  Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation , 2003 .

[46]  K. Ramamurthy,et al.  STRUCTURE AND PROPERTIES OF AERATED CONCRETE: A REVIEW , 2000 .

[47]  F. Hasson,et al.  Research guidelines for the Delphi survey technique. , 2000, Journal of advanced nursing.

[48]  Prithvi S. Kandhal,et al.  Hot Mix Asphalt Materials, Mixture Design and Construction , 1996 .

[49]  T. Tsuchiya,et al.  Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo , 1996, FEBS letters.

[50]  A. Neville Properties of Concrete , 1968 .

[51]  E. C. Hammond,et al.  Asbestos exposure, smoking, and neoplasia. , 1968, JAMA.

[52]  M. Roco National Nanotechnology Initiative , 2012 .

[53]  Ali Nazari,et al.  Mechanical properties of cement mortar with Al 2O3 nanoparticles , 2010 .

[54]  F. Moussa,et al.  Toxicity studies of fullerenes and derivatives. , 2007, Advances in experimental medicine and biology.

[55]  Roger L. Brockenbrough,et al.  Structural Steel Designer’s Handbook: AISC, AASHTO, AISI, ASTM, AREMA, and ASCE-07 Design Standards , 2006 .

[56]  Xueqing Zhang,et al.  Critical Success Factors for Public-Private Partnerships in Infrastructure Development , 2005 .

[57]  Zhao Shi-li Study on Preparation and Performance of Nano Antimony Tin Oxide (ATO) Based Transparent Heat Insulation Coatings , 2004 .

[58]  Michael J. Karter,et al.  FIRE LOSS IN THE UNITED STATES DURING 2009 , 2002 .

[59]  James M. Becker,et al.  Reinforced Concrete Frames in Fire Environments , 1977 .