Longitudinal Changes of Fixation Location and Stability Within 12 Months in Stargardt Disease: ProgStar Report No. 12.

[1]  J. Sahel,et al.  Visual Acuity Change over 12 Months in the Prospective Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: ProgStar Report Number 6. , 2017, Ophthalmology.

[2]  A. Cideciyan,et al.  Macular Sensitivity Measured With Microperimetry in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: Report No. 7 , 2017, JAMA ophthalmology.

[3]  A. Cideciyan,et al.  Incidence of Atrophic Lesions in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: Report No. 5 , 2017, JAMA ophthalmology.

[4]  A. Cideciyan,et al.  Progression of Visual Acuity and Fundus Autofluorescence in Recent-Onset Stargardt Disease: ProgStar Study Report #4. , 2016, Ophthalmology. Retina.

[5]  A. Cideciyan,et al.  Fixation Location and Stability Using the MP-1 Microperimeter in Stargardt Disease: ProgStar Report No. 3. , 2017, Ophthalmology. Retina.

[6]  B. Roska,et al.  Emerging therapies for inherited retinal degeneration , 2016, Science Translational Medicine.

[7]  J. Sahel,et al.  Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). , 2016, Ophthalmology.

[8]  Michel Michaelides,et al.  Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options , 2016, British Journal of Ophthalmology.

[9]  J. Sahel,et al.  The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies: Design and Baseline Characteristics: ProgStar Report No. 1. , 2016, Ophthalmology.

[10]  M. Steinbach,et al.  Repeatability of Nidek MP-1 Fixation Measurements in Patients With Bilateral Central Field Loss. , 2015, Investigative ophthalmology & visual science.

[11]  P. Melillo,et al.  Macular function and morphologic features in juvenile stargardt disease: longitudinal study. , 2014, Ophthalmology.

[12]  E. Vingolo,et al.  Normal values and repeatibility of bivariate contour ellipse area (BCEA) with Microperimeter Mp-1. , 2014 .

[13]  J. Sahel,et al.  Gene therapy arrives at the macula , 2014, The Lancet.

[14]  M. Greenlee,et al.  Neural correlates of visual search in patients with hereditary retinal dystrophies , 2013, Human brain mapping.

[15]  S. Vujosevic,et al.  Static and dynamic retinal fixation stability in microperimetry. , 2010, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[16]  Mark W. Greenlee,et al.  Gray matter alterations in visual cortex of patients with loss of central vision due to hereditary retinal dystrophies , 2011, NeuroImage.

[17]  M. Crossland,et al.  Fixation stability: a comparison between the Nidek MP-1 and the Rodenstock scanning laser ophthalmoscope in persons with and without diabetic maculopathy. , 2010, Investigative ophthalmology & visual science.

[18]  M. Crossland,et al.  FIXATION STABILITY MEASUREMENT USING THE MP1 MICROPERIMETER , 2009, Retina.

[19]  P. Harris,et al.  Research electronic data capture (REDCap) - A metadata-driven methodology and workflow process for providing translational research informatics support , 2009, J. Biomed. Informatics.

[20]  G. Fishman,et al.  Natural History of Phenotypic Changes in Stargardt Macular Dystrophy , 2009, Ophthalmic genetics.

[21]  Esther G González,et al.  Fixation stability, fixation location, and visual acuity after successful macular hole surgery. , 2009, Investigative ophthalmology & visual science.

[22]  M. Seeliger,et al.  Quantifying fixation in patients with Stargardt disease , 2007, Vision Research.

[23]  T. Aleman,et al.  ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. , 2005, Investigative ophthalmology & visual science.

[24]  Michael D Crossland,et al.  Preferred retinal locus development in patients with macular disease. , 2005, Ophthalmology.

[25]  Michael D Crossland,et al.  Fixation stability and reading speed in patients with newly developed macular disease * , 2004, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[26]  C. Frennesson,et al.  Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope , 2003, Vision Research.

[27]  Mark S Humayun,et al.  Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. , 2002, Ophthalmology.

[28]  C. Frennesson,et al.  Location and Stability of a Newly Established Eccentric Retinal Locus Suitable for Reading, Achieved through Training of Patients with a Dense Central Scotoma , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[29]  K. Rohrschneider,et al.  [Fixation behavior in Stargardt disease. Fundus-controlled studies]. , 1997, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[30]  H. Völcker,et al.  Fixationsverhalten bei Morbus Stargardt Funduskontrollierte Untersuchungen*,** , 1997, Der Ophthalmologe.

[31]  G. Rubin,et al.  Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. , 1996, Ophthalmology.

[32]  G. Fishman,et al.  Visual acuity loss in patients with Stargardt's macular dystrophy. , 1987, Ophthalmology.