On Sparsification for Computing Treewidth
暂无分享,去创建一个
[1] Michael R. Fellows,et al. Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity , 2013, Eur. J. Comb..
[2] Dániel Marx,et al. Kernelization of packing problems , 2012, SODA.
[3] Stéphan Thomassé,et al. A 4k2 kernel for feedback vertex set , 2010, TALG.
[4] Miroslav Chlebík,et al. Crown reductions for the Minimum Weighted Vertex Cover problem , 2008, Discret. Appl. Math..
[5] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[6] Stefan Kratsch,et al. Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..
[7] Rolf H. M ring. Triangulating graphs without asteroidal triples , 1996 .
[8] Arie M. C. A. Koster,et al. Safe separators for treewidth , 2006, Discret. Math..
[9] Janka Chlebíková,et al. The structure of obstructions to treewidth and pathwidth , 1999, Discret. Appl. Math..
[10] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[11] Arie M. C. A. Koster,et al. PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..
[12] Andrew Drucker,et al. New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[13] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[14] Ivan Hal Sudborough,et al. Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.
[15] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[16] Russell Impagliazzo,et al. Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[17] B. Jansen. The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .
[18] Chee-Keng Yap,et al. Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..
[19] Brian Lucena,et al. Achievable sets, brambles, and sparse treewidth obstructions , 2007, Discret. Appl. Math..
[20] Dimitrios M. Thilikos,et al. On exact algorithms for treewidth , 2006, TALG.
[21] Arie M. C. A. Koster,et al. Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.
[22] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[23] Judy Goldsmith,et al. Nondeterminism Within P , 1993, SIAM J. Comput..
[24] H. E. Vaughan,et al. The Marriage Problem , 1950 .
[25] Fedor V. Fomin,et al. Hitting Forbidden Minors: Approximation and Kernelization , 2010, SIAM J. Discret. Math..
[26] Xi Wu,et al. Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.
[27] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[28] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[29] Stefan Kratsch,et al. Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.
[30] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[31] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[32] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[33] Bart M. P. Jansen. On Sparsification for Computing Treewidth , 2013, IPEC.
[34] Stefan Kratsch,et al. Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..
[35] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[36] Michael R. Fellows,et al. FPT is Characterized by Useful Obstruction Sets , 2013, WG.
[37] Stefan Kratsch,et al. Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.
[38] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[39] Jörg Flum,et al. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .