On Sparsification for Computing Treewidth

We investigate whether an $$n$$n-vertex instance $$(G,k)$$(G,k) of Treewidth, asking whether the graph $$G$$G has treewidth at most $$k$$k, can efficiently be made sparse without changing its answer. By giving a special form of $$\mathop {\mathrm {\textsc {or}}}$$OR-cross-composition, we prove that this is unlikely: if there is an $$\epsilon > 0$$ϵ>0 and a polynomial-time algorithm that reduces $$n$$n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with $$\mathcal {O} (n^{2 - \epsilon })$$O(n2-ϵ) bits, then NP $$\subseteq $$⊆ coNP$$/$$/poly and the polynomial hierarchy collapses to its third level. Our sparsification lower bound has implications for structural parameterizations of Treewidth: parameterizations by measures $$\ell $$ℓ that do not exceed the number of vertices cannot have kernels with $$\mathcal {O} (\ell ^{2 - \epsilon })$$O(ℓ2-ϵ) bits for any $$\epsilon > 0$$ϵ>0, unless NP $$\subseteq $$⊆ coNP$$/$$/poly. Motivated by the question of determining the optimal kernel size for Treewidth parameterized by the size of a vertex cover $$X$$X, we improve the $$\mathcal {O} (|X|^3)$$O(|X|3)-vertex kernel from Bodlaender et al. (SIDMA 2013) to a kernel with $$\mathcal {O} (|X|^2)$$O(|X|2) vertices. Our improved kernel is based on the novel notion of treewidth-invariant set. We use the $$q$$q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs whose order is superquadratic in their vertex cover number. We believe that our new reduction rule will be useful in practice.

[1]  Michael R. Fellows,et al.  Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity , 2013, Eur. J. Comb..

[2]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[3]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[4]  Miroslav Chlebík,et al.  Crown reductions for the Minimum Weighted Vertex Cover problem , 2008, Discret. Appl. Math..

[5]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[6]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[7]  Rolf H. M ring Triangulating graphs without asteroidal triples , 1996 .

[8]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[9]  Janka Chlebíková,et al.  The structure of obstructions to treewidth and pathwidth , 1999, Discret. Appl. Math..

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[11]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[12]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[13]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[14]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[15]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[16]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[17]  B. Jansen The Power of Data Reduction : Kernels for Fundamental Graph Problems , 2013 .

[18]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[19]  Brian Lucena,et al.  Achievable sets, brambles, and sparse treewidth obstructions , 2007, Discret. Appl. Math..

[20]  Dimitrios M. Thilikos,et al.  On exact algorithms for treewidth , 2006, TALG.

[21]  Arie M. C. A. Koster,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.

[22]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[24]  H. E. Vaughan,et al.  The Marriage Problem , 1950 .

[25]  Fedor V. Fomin,et al.  Hitting Forbidden Minors: Approximation and Kernelization , 2010, SIAM J. Discret. Math..

[26]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[27]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[28]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[29]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[30]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[31]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[32]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[33]  Bart M. P. Jansen On Sparsification for Computing Treewidth , 2013, IPEC.

[34]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[35]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[36]  Michael R. Fellows,et al.  FPT is Characterized by Useful Obstruction Sets , 2013, WG.

[37]  Stefan Kratsch,et al.  Kernel Bounds for Structural Parameterizations of Pathwidth , 2012, SWAT.

[38]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[39]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .