Optimization of VARICOL SMB processes using hybrid modeling and nonlinear programming

Abstract The Varicol process exhibits continuous and discrete-time dynamics and can be represented by a hybrid model, where the continuous-time dynamics is described by mass-balance partial differential equations, whereas the discrete-time dynamics is described by a timed transition Petri net (TTPN). This hybrid model allows to simplify the solution of a normally difficult Mixed-Integer Non-Linear Programming problem for maximizing the productivity of a Varicol process subject to constraints on the desired purities of the extract and the raffinate components. Indeed, the coverability tree of the TTPN can be constructed to generate a set of candidate integer parameters, and the corresponding nonlinear problems are solved for a subset of candidates selected on the basis of an approximate evaluation using the (true moving bed) triangle theory. The optimal solution is the Varicol configuration (column sequence) for which the productivity is maximal. A repeatability and a robustness analysis show the feasibility of this approach.

[1]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[2]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[3]  Massimo Morbidelli,et al.  Multiobjective optimization of simulated moving bed and Varicol processes using a genetic algorithm. , 2003, Journal of chromatography. A.

[4]  A. Rodrigues,et al.  Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns. , 2003, Journal of chromatography. A.

[5]  Kus Hidajat,et al.  Optimization of Simulated Moving Bed and Varicol Processes for Glucose–Fructose Separation , 2003 .

[6]  MengChu Zhou,et al.  Petri nets and industrial applications: A tutorial , 1994, IEEE Trans. Ind. Electron..

[7]  M. Dotoli,et al.  An Optimization Approach for Identification of Petri Nets , 2006, 2006 8th International Workshop on Discrete Event Systems.

[8]  Arvind Rajendran,et al.  Simulated moving bed chromatography for the separation of enantiomers. , 2009, Journal of chromatography. A.

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  Massimo Morbidelli,et al.  Optimal operation of simulated moving bed units for nonlinear chromatographic separations , 1997 .

[11]  Alain Vande Wouwer,et al.  Combination of multi-model predictive control and the wave theory for the control of simulated moving bed plants , 2011 .

[12]  A. Vande Wouwer,et al.  Modeling and simulation of a SMB chromatographic process designed for enantioseparation , 2000 .

[13]  Weifang Yu,et al.  Optimization of reactive simulated moving bed and Varicol systems for hydrolysis of methyl acetate , 2005 .

[14]  Lorenz T. Biegler,et al.  Large scale optimization strategies for zone configuration of simulated moving beds , 2008, Comput. Chem. Eng..

[15]  Alain Vande Wouwer,et al.  Varicol process optimization strategy based on the solution of a MINLP , 2012 .

[16]  Kus Hidajat,et al.  Optimization of reactive SMB and Varicol systems , 2003, Comput. Chem. Eng..

[17]  Olivier Ludemann-Hombourger,et al.  The “VARICOL” Process: A New Multicolumn Continuous Chromatographic Process , 2000 .

[18]  G. Nemhauser,et al.  Integer Programming , 2020 .

[19]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[20]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[21]  A. Wouwer,et al.  Simulation of distributed parameter systems using a matlab-based method of lines toolbox: Chemical engineering applications , 2004 .

[22]  Joseph Sifakis,et al.  Use of Petri nets for performance evaluation , 1977, Acta Cybern..

[23]  Luís S. Pais,et al.  Modeling strategies for enantiomers separation by SMB chromatography , 1998 .

[24]  Sebastian Engell,et al.  Optimization-based control of a reactive simulated moving bed process for glucose isomerization , 2004 .

[25]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[26]  Yan Zhang,et al.  Multi-objective optimization of simulated moving bed and Varicol processes for enantio-separation of racemic pindolol , 2009 .