Bergman theory of certain generalized Hartogs triangles

The Bergman theory of domains $\{ |{z_{1} |^{\gamma}} < |{z_{2}} | < 1 \}$ in $\mathbb{C}^2$ is studied for certain values of $\gamma$, including all positive integers. For such $\gamma$, we obtain a closed form expression for the Bergman kernel, $\mathbb{B}_{\gamma}$. With these formulas, we make new observations relating to the Lu Qi-Keng problem and analyze the boundary behavior of $\mathbb{B}_{\gamma}(z,z)$.

[1]  J. McNeal,et al.  The Bergman projection on fat Hartogs triangles: L^p boundedness , 2015, 1502.07302.

[2]  Yunus E. Zeytuncu,et al.  mapping properties of the Bergman projection on the Hartogs triangle , 2014, 1410.1105.

[3]  D. Chakrabarti,et al.  Sobolev regularity of the $$\overline{\partial }$$-equation on the Hartogs triangle , 2013 .

[4]  Siqi Fu Estimates of Invariant Metrics on Pseudoconvex Domains Near Boundaries with Constant Levi Ranks , 2012, 1203.1872.

[5]  Jong-Do Park New formulas of the Bergman kernels for complex ellipsoids in ℂ , 2008 .

[6]  H. Boas LU QI-KENG'S PROBLEM , 2000, math/0001036.

[7]  H. Boas,et al.  The Bergman kernel function: Explicit formulas and zeroes , 1997, math/9706202.

[8]  H. Boas The Lu Qi-Keng Conjecture Fails Generically , 1994, math/9412201.

[9]  J. McNeal Estimates on the Bergman Kernels of Convex Domains , 1994 .

[10]  J. D'Angelo An explicit computation of the Bergman kernel function , 1994 .

[11]  D. Catlin Estimates of invariant metrics on pseudoconvex domains of dimension two , 1989 .

[12]  J. McNeal Boundary behavior of the Bergman kernel function in $\mathbb{C}^2$ , 1989 .

[13]  J. D'Angelo A note on the Bergman kernel , 1978 .

[14]  C. Fefferman The Bergman kernel and biholomorphic mappings of pseudoconvex domains , 1974 .

[15]  L. Hörmander L2 estimates and existence theorems for the $$\bar \partial $$ operator , 1965 .

[16]  Elias M. Stein,et al.  Estimates for the Bergman and Szegö kernels in $\mathbf{C}^2$ , 1989 .