Bergman theory of certain generalized Hartogs triangles
暂无分享,去创建一个
[1] J. McNeal,et al. The Bergman projection on fat Hartogs triangles: L^p boundedness , 2015, 1502.07302.
[2] Yunus E. Zeytuncu,et al. mapping properties of the Bergman projection on the Hartogs triangle , 2014, 1410.1105.
[3] D. Chakrabarti,et al. Sobolev regularity of the $$\overline{\partial }$$-equation on the Hartogs triangle , 2013 .
[4] Siqi Fu. Estimates of Invariant Metrics on Pseudoconvex Domains Near Boundaries with Constant Levi Ranks , 2012, 1203.1872.
[5] Jong-Do Park. New formulas of the Bergman kernels for complex ellipsoids in ℂ , 2008 .
[6] H. Boas. LU QI-KENG'S PROBLEM , 2000, math/0001036.
[7] H. Boas,et al. The Bergman kernel function: Explicit formulas and zeroes , 1997, math/9706202.
[8] H. Boas. The Lu Qi-Keng Conjecture Fails Generically , 1994, math/9412201.
[9] J. McNeal. Estimates on the Bergman Kernels of Convex Domains , 1994 .
[10] J. D'Angelo. An explicit computation of the Bergman kernel function , 1994 .
[11] D. Catlin. Estimates of invariant metrics on pseudoconvex domains of dimension two , 1989 .
[12] J. McNeal. Boundary behavior of the Bergman kernel function in $\mathbb{C}^2$ , 1989 .
[13] J. D'Angelo. A note on the Bergman kernel , 1978 .
[14] C. Fefferman. The Bergman kernel and biholomorphic mappings of pseudoconvex domains , 1974 .
[15] L. Hörmander. L2 estimates and existence theorems for the $$\bar \partial $$ operator , 1965 .
[16] Elias M. Stein,et al. Estimates for the Bergman and Szegö kernels in $\mathbf{C}^2$ , 1989 .