Epi-convergent scenario generation method for stochastic problems via sparse grid

One central problem in solving stochastic programming problems is to generate moderate-sized scenario trees which represent well the risk faced by a decision maker. In this paper we propose an efficient scenario generation method based on sparse grid, and prove it is epi-convergent. Furthermore, we show numerically that the proposed method converges to the true optimal value fast in comparison with Monte Carlo and Quasi Monte Carlo methods.

[1]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[2]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[3]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[4]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[5]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[6]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[7]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[8]  Peter Kall,et al.  Approximation to Optimization Problems: An Elementary Review , 1986, Math. Oper. Res..

[9]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[10]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[11]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[12]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[13]  Suvrajeet Sen,et al.  The Scenario Generation Algorithm for Multistage Stochastic Linear Programming , 2005, Math. Oper. Res..

[14]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[15]  Teemu Pennanen,et al.  Epi-convergent discretizations of multistage stochastic programs via integration quadratures , 2008, Math. Program..

[16]  Michael A. H. Dempster,et al.  Evpi-Based Importance Sampling Solution Procedures for Multistage Stochastic Linear Programmes on Parallel Mimd Architectures , 1997 .

[17]  Teemu Pennanen,et al.  Epi-convergent discretizations of stochastic programs via integration quadratures , 2005, Numerische Mathematik.

[18]  Stan Uryasev,et al.  Conditional Value-at-Risk: Optimization Approach , 2001 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[21]  D. Morton,et al.  Assessing policy quality in multi-stage stochastic programming , 2004 .

[22]  Sanjay Mehrotra,et al.  Convergence Analysis of a Weighted Barrier Decomposition Algorithm for Two Stage Stochastic Programming , 2008 .

[23]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[24]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[25]  H. Attouch Variational convergence for functions and operators , 1984 .

[26]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[27]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[28]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[29]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[30]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[31]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[32]  S. Wallace,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[33]  Sanjay Mehrotra,et al.  Self-concordant Tree and Decomposition Based Interior Point Methods for Stochastic Convex Optimization Problem , 2007 .

[34]  W. Rudin Real and complex analysis , 1968 .