Secondary Nucleation-Triggered Physical Cross-Links and Tunable Stiffness in Seeded Supramolecular Hydrogels.

Mechanistic understanding and the control of molecular self-assembly at all hierarchical levels remain grand challenges in supramolecular chemistry. Functional realization of dynamic supramolecular materials especially requires programmed assembly at higher levels of molecular organization. Herein, we report an unprecedented molecular control on the fibrous network topology of supramolecular hydrogels and their resulting macroscopic properties by biasing assembly pathways of higher-order structures. The surface-catalyzed secondary nucleation process, a well-known mechanism in amyloid fibrilization and chiral crystallization of small molecules, is introduced as a non-covalent strategy to induce physical cross-links and bundling of supramolecular fibers, which influences the microstructure of gel networks and subsequent mechanical properties of hydrogels. In addition, seed-induced instantaneous gelation is realized in the kinetically controlled self-assembled system under this study, and more importantly, the extent of secondary nucleation events and network topology is manipulated by the concentration of seeds.

[1]  T. Hermans,et al.  Chemically Fueled Self-Sorted Hydrogels. , 2021, Journal of the American Chemical Society.

[2]  F. Ricci,et al.  Spontaneous Reorganization of DNA-Based Polymers in Higher Ordered Structures Fueled by RNA , 2021, Journal of the American Chemical Society.

[3]  S. Linse,et al.  Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of Aβ42 Aggregation. , 2021, Journal of the American Chemical Society.

[4]  S. Linse,et al.  Chiral Selectivity of Secondary Nucleation in Amyloid Fibril Propagation , 2021, Angewandte Chemie.

[5]  H. Sleiman,et al.  A dissipative pathway for the structural evolution of DNA fibres , 2021, Nature Chemistry.

[6]  Subi J. George,et al.  Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization. , 2021, Journal of the American Chemical Society.

[7]  Munenori Numata,et al.  Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer's End Striking Monomers. , 2021, Journal of the American Chemical Society.

[8]  R. Harniman,et al.  Dendritic Micelles with Controlled Branching and Sensor Applications. , 2021, Journal of the American Chemical Society.

[9]  R. Rashidi,et al.  Effective role of minor silicon addition on crystallization kinetics of Cu50Zr43Al7 bulk metallic glass , 2021, Applied Physics A.

[10]  D. Adams,et al.  Programming Gels Over a Wide pH Range Using Multicomponent Systems , 2021, Angewandte Chemie.

[11]  P. Genever,et al.  Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents† , 2021, Chemical science.

[12]  S. Perrier,et al.  Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water , 2020, Journal of the American Chemical Society.

[13]  Sarit S. Agasti,et al.  Transient dormant monomer states for supramolecular polymers with low dispersity , 2020, Nature Communications.

[14]  S. George,et al.  Stereoselective Seed Induced Living Supramolecular Polymerization. , 2020, Angewandte Chemie.

[15]  E. W. Meijer,et al.  Supramolecular double-stranded Archimedean spirals and concentric toroids , 2020, Nature Communications.

[16]  L. Pesce,et al.  Self-assembled poly-catenanes from supramolecular toroidal building blocks , 2020, Nature.

[17]  E. W. Meijer,et al.  Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials , 2020 .

[18]  Subi J. George,et al.  Self-Sorted, Random and Block Supramolecular Co-polymers via Sequence Controlled, Multicomponent Self-Assembly. , 2020, Journal of the American Chemical Society.

[19]  R. Rashidi,et al.  Mechanical properties and crystallization kinetics of Er-containing Cu–Zr–Al bulk metallic glasses with excellent glass forming ability , 2020 .

[20]  K. Rissanen,et al.  Steroidal supramolecular metallogels. , 2020, Chemical Society reviews.

[21]  Kai Zhang,et al.  Biomimetic strain-stiffening self-assembled hydrogels. , 2020, Angewandte Chemie.

[22]  E. W. Meijer,et al.  Supramolecular Polymers – we've Come Full Circle , 2020 .

[23]  F. Würthner,et al.  Supramolecular polymerization through kinetic pathway control and living chain growth , 2019, Nature Reviews Chemistry.

[24]  Owen Tao,et al.  Smart Hydrogels in Tissue Engineering and Regenerative Medicine , 2019, Materials.

[25]  M. Maaloum,et al.  Temperature Control of Sequential Nucleation-Growth Mechanisms in Hierarchical Supramolecular Polymers. , 2019, Chemistry.

[26]  M. Wuttig,et al.  Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge2Sb2Te5 , 2019, Advanced materials.

[27]  F. Würthner,et al.  Supramolecular Block Copolymers by Seeded Living Polymerization of Perylene Bisimides. , 2019, Journal of the American Chemical Society.

[28]  Jonas Matern,et al.  Revising Complex Supramolecular Polymerization under Kinetic and Thermodynamic Control , 2019, Angewandte Chemie.

[29]  U. Maitra,et al.  Supramolecular Gelation of Europium and Calcium Cholates through the Nucleation-Elongation Growth Mechanism. , 2019, ChemPlusChem.

[30]  P. R. Chivers,et al.  Shaping and structuring supramolecular gels , 2019, Nature Reviews Materials.

[31]  D. Adams,et al.  Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[32]  E. W. Meijer,et al.  The construction of supramolecular systems , 2019, Science.

[33]  Ankit Jain,et al.  Chemical fuel-driven living and transient supramolecular polymerization , 2019, Nature Communications.

[34]  E. W. Meijer,et al.  Effect of Intra- versus Intermolecular Cross-Linking on the Supramolecular Folding of a Polymer Chain , 2018, Macromolecules.

[35]  M. Stich,et al.  Oscillations, travelling fronts and patterns in a supramolecular system , 2018, Nature Nanotechnology.

[36]  R. Harniman,et al.  Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. , 2018, Chemistry.

[37]  L. J. Prins,et al.  Energy consumption in chemical fuel-driven self-assembly , 2018, Nature Nanotechnology.

[38]  S. Linse,et al.  Secondary nucleation in amyloid formation. , 2018, Chemical communications.

[39]  J. N. Hay Secondary crystallization kinetics , 2018, POLYMER CRYSTALLIZATION.

[40]  G. Pavan,et al.  A Block Supramolecular Polymer and Its Kinetically Enhanced Stability. , 2018, Journal of the American Chemical Society.

[41]  P. Besenius,et al.  Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion. , 2018, Angewandte Chemie.

[42]  L. Sánchez,et al.  Pathway Complexity Versus Hierarchical Self-Assembly in N-Annulated Perylenes: Structural Effects in Seeded Supramolecular Polymerization. , 2018, Angewandte Chemie.

[43]  S. Yamaguchi,et al.  Seeded Polymerization through the Interplay of Folding and Aggregation of an Amino-Acid-based Diamide. , 2018, Angewandte Chemie.

[44]  Shikha Dhiman,et al.  Temporally Controlled Supramolecular Polymerization , 2018, Bulletin of the Chemical Society of Japan.

[45]  P. Besenius,et al.  Kinetically Controlled Stepwise Self-Assembly of AuI-Metallopeptides in Water. , 2018, Journal of the American Chemical Society.

[46]  L. Sánchez,et al.  Tunable Energy Landscapes to Control Pathway Complexity in Self-Assembled N-Heterotriangulenes: Living and Seeded Supramolecular Polymerization. , 2018, Small.

[47]  R. Mishra,et al.  The Helix to Super-Helix Transition in the Self-Assembly of π-Systems: Superseding of Molecular Chirality at Hierarchical Level. , 2017, Angewandte Chemie.

[48]  D. Adams,et al.  Low-Molecular-Weight Gels: The State of the Art , 2017 .

[49]  P. R. Chivers,et al.  Spatially-resolved soft materials for controlled release – hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel , 2017, Chemical science.

[50]  Shu Seki,et al.  Control over differentiation of a metastable supramolecular assembly in one and two dimensions. , 2017, Nature chemistry.

[51]  Hajime Shigemitsu,et al.  Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. , 2017, Accounts of chemical research.

[52]  R. Finke,et al.  Sigmoidal Nucleation and Growth Curves Across Nature Fit by the Finke–Watzky Model of Slow Continuous Nucleation and Autocatalytic Growth: Explicit Formulas for the Lag and Growth Times Plus Other Key Insights , 2017 .

[53]  J. Steed,et al.  Supramolecular materials. , 2017, Chemical Society reviews.

[54]  R. Weiss,et al.  Modulation of the Mechanical Properties of Hydrophobically Modified Supramolecular Hydrogels by Surfactant-Driven Structural Rearrangement , 2016 .

[55]  David J. Mooney,et al.  Designing hydrogels for controlled drug delivery. , 2016, Nature reviews. Materials.

[56]  J. Burdick,et al.  A practical guide to hydrogels for cell culture , 2016, Nature Methods.

[57]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[58]  Michele Vendruscolo,et al.  Molecular mechanisms of protein aggregation from global fitting of kinetic models , 2016, Nature Protocols.

[59]  F. Würthner,et al.  Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. , 2016, Journal of the American Chemical Society.

[60]  Weidong Yu,et al.  Crystal networks in supramolecular gels: formation kinetics and mesoscopic engineering principles , 2015 .

[61]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[62]  Ayyappanpillai Ajayaghosh,et al.  Living supramolecular polymerization , 2015, Science.

[63]  Tom F A de Greef,et al.  Programmable Supramolecular Polymerizations. , 2015, Angewandte Chemie.

[64]  F. Würthner,et al.  Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides , 2015, Nature Communications.

[65]  Masayuki Takeuchi,et al.  Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. , 2015, Journal of the American Chemical Society.

[66]  Tadashi Mori,et al.  A rational strategy for the realization of chain-growth supramolecular polymerization , 2015, Science.

[67]  F. MacKintosh,et al.  Ultra-responsive soft matter from strain-stiffening hydrogels , 2014, Nature Communications.

[68]  R. Weiss The past, present, and future of molecular gels. What is the status of the field, and where is it going? , 2014, Journal of the American Chemical Society.

[69]  David J. Lunn,et al.  Colour-tunable fluorescent multiblock micelles , 2014, Nature Communications.

[70]  Frank Würthner,et al.  Supramolecular polymerization: Living it up. , 2014, Nature chemistry.

[71]  Masayuki Takeuchi,et al.  Living supramolecular polymerization realized through a biomimetic approach , 2014, Nature Chemistry.

[72]  E. W. Meijer,et al.  Pathway Complexity in π-Conjugated Materials , 2014 .

[73]  Ayyappanpillai Ajayaghosh,et al.  Functional π-gelators and their applications. , 2014, Chemical reviews.

[74]  David R. Liu,et al.  Sequence-Controlled Polymers , 2013, Science.

[75]  D. Adams,et al.  The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. , 2013, Chemical Society reviews.

[76]  Eduardo Mendes,et al.  Responsive biomimetic networks from polyisocyanopeptide hydrogels , 2013, Nature.

[77]  E. W. Meijer,et al.  Orthogonal self-assembly in folding block copolymers. , 2013, Journal of the American Chemical Society.

[78]  M. Wolcott,et al.  Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. , 2012, Carbohydrate polymers.

[79]  O. Scherman,et al.  Supramolecular polymeric hydrogels. , 2012, Chemical Society reviews.

[80]  U. Maitra,et al.  Metal cholate hydrogels: versatile supramolecular systems for nanoparticle embedded soft hybrid materials , 2012 .

[81]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[82]  E. W. Meijer,et al.  Pathway complexity in supramolecular polymerization , 2012, Nature.

[83]  T. Fukushima,et al.  Supramolecular Linear Heterojunction Composed of Graphite-Like Semiconducting Nanotubular Segments , 2011, Science.

[84]  J. Nam,et al.  Responsive nematic gels from the self-assembly of aqueous nanofibres. , 2011, Nature communications.

[85]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[86]  Xiang‐Yang Liu,et al.  Architecture of Supramolecular Soft Functional Materials: From Understanding to Micro‐/Nanoscale Engineering , 2010 .

[87]  Oren A Scherman,et al.  Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. , 2010, Journal of the American Chemical Society.

[88]  I. Manners,et al.  Monodisperse cylindrical micelles by crystallization-driven living self-assembly. , 2010, Nature chemistry.

[89]  Masaru Yoshida,et al.  High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder , 2010, Nature.

[90]  Andrew M. Smith,et al.  Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[91]  Eunji Lee,et al.  Lateral association of cylindrical nanofibers into flat ribbons triggered by "molecular glue". , 2008, Angewandte Chemie.

[92]  Aaron M. Kushner,et al.  Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. , 2007, Journal of the American Chemical Society.

[93]  Mitchell A. Winnik,et al.  Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture , 2007, Science.

[94]  Xiang‐Yang Liu,et al.  Architecture of fiber network: from understanding to engineering of molecular gels. , 2006, The journal of physical chemistry. B.

[95]  E. W. Meijer,et al.  Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers , 2006 .

[96]  Akira Harada,et al.  Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. , 2006, Angewandte Chemie.

[97]  S. Shinkai,et al.  A supramolecular bundling approach toward the alignment of conjugated polymers. , 2006, Angewandte Chemie.

[98]  Myongsoo Lee,et al.  Transformation of isotropic fluid to nematic gel triggered by dynamic bridging of supramolecular nanocylinders. , 2005, Journal of the American Chemical Society.

[99]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[100]  Akira Harada,et al.  Photoresponsive Hydrogel System Using Molecular Recognition of α-Cyclodextrin , 2005 .

[101]  S. Raghavan,et al.  Kinetics of 5α-Cholestan-3β-yl N-(2-Naphthyl)carbamate/n-Alkane Organogel Formation and Its Influence on the Fibrillar Networks , 2005 .

[102]  Trong-Ming Don,et al.  Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly(3-hydroxybutyrate) with low molecular weight poly(ethylene oxide) , 2003 .

[103]  Po-Da Hong,et al.  Crystallization kinetics and morphology of poly(trimethylene terephthalate) , 2002 .

[104]  D. Kondepudi,et al.  Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. , 2001, Accounts of chemical research.

[105]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[106]  K. Lu,et al.  AN EXPLANATION TO THE ANOMALOUS AVRAMI EXPONENT , 1996 .

[107]  K. Yamaura,et al.  Gelation by Linking of Growing Spherulites in Poly(4-methyl-1-pentene) Cyclohexane Solution , 1986 .

[108]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[109]  W. Ostwald Studien über die Bildung und Umwandlung fester Körper , 1897 .