Minimal Representation of Semiorders with Intervals of Same Length
暂无分享,去创建一个
[1] M. Pirlot. Minimal representation of a semiorder , 1990 .
[2] Colin de la Higuera,et al. Computing the Jump Number on Semi-orders Is Polynomial , 1994, Discret. Appl. Math..
[3] Michel Morvan,et al. A Linear Time and Space Algorithm to Regonize Interval Orders , 1993, Discret. Appl. Math..
[4] Jutta Mitas. Tackling the jump number of interval orders , 1991 .
[5] I. Rabinovitch,et al. The Dimension of Semiorders , 1978, J. Comb. Theory, Ser. A.
[6] Graham Brightwell. Semiorders and the 1/3–2/3 conjecture , 1989 .
[7] I. Rabinovitch,et al. An Upper Bound on the "Dimension of Interval Orders" , 1978, J. Comb. Theory, Ser. A.
[8] Peter Winkler,et al. Counting linear extensions is #P-complete , 1991, STOC '91.
[9] Patrick Suppes,et al. Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.
[10] John E. Freund,et al. On the Enumeration of Decision Patterns Involving $n$ Means , 1957 .