Taylor-like expansion in terms of a rational function obtained by means of fractional derivatives

In 2007, Tremblay and Fugère [The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions, Appl. Math. Comput. 187 (2007), pp. 507–529] motivated by a generalization of Taylor's series of f(z) obtained in 1971 by Osler [Taylor's series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2 (1971), pp. 37–48] presented a new expansion of an analytic function f(z) in ℛ in terms of a power series θ(t)=tq(t), where q(t) is any regular function and t is equal to the quadratic function [(z−z 1)(z−z 2)], z 1≠z 2, where z 1 and z 2 are two points in ℛ. They also deduced the region of validity of this formula. In this paper, we present the power series expansion of an analytic function f(z) in ℛ in the case where t is equal to the rational function ((z−z 1)/(z−z 2)), q(t)=1, z 1≠z 2 and z 1 and z 2 are two arbitrary points in ℛ.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  A. Erdélyi,et al.  An Integral Equation Involving Legendre Functions , 1964 .

[3]  J. Hammond On General Differentiation , 1880 .

[4]  Thomas J. Osler,et al.  Fractional Derivatives and Special Functions , 1976 .

[5]  B. Riemann,et al.  Versuch einer allgemeinen Auffassung der Integration und Differentiation. (1847.) , 2013 .

[6]  Richard Tremblay Some Operational Formulas Involving the Operators $xD$, $x\Delta $ and Fractional Derivatives , 1979 .

[7]  Richard Tremblay,et al.  The use of fractional derivatives to expand analytical functions in terms of quadratic functions with applications to special functions , 2007, Appl. Math. Comput..

[8]  L. Pochhammer,et al.  Zur Theorie der Euler'schen Integrale , 1890 .

[9]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[10]  G. H. Hardy,et al.  Riemann's Form of Taylor's Series , 1945 .

[11]  Thomas J. Osler,et al.  Fractional Derivatives and Leibniz Rule , 1971 .

[12]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[13]  L. Pochhammer Ueber eine Classe von Integralen mit geschlossener Integrationscurve , 1890 .

[14]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[15]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[16]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[17]  C. Jordan Cours d'analyse de l'Ecole polytechnique , 2013 .

[18]  T. Osler Leibniz rule, the chain rule, and taylor's theorme for fractional derivatives , 1971 .

[19]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[20]  R. Tremblay,et al.  Expansions of Operators Related to $xD$ and the Fractional Derivative , 1984 .

[21]  Thomas J. Osler,et al.  Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series , 1970 .

[22]  B. Dwork Generalized Hypergeometric Functions , 1990 .

[23]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[24]  Thomas J. Osler,et al.  The Fractional Derivative of a Composite Function , 1970 .

[25]  Thomas J. Osler,et al.  Fundamental properties of fractional derivatives via pochhammer integrals , 1975 .

[26]  J. Liouville Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .

[27]  L. Pochhammer,et al.  Ueber ein Integral mit doppeltem Umlauf , 1890 .