Bayesian rough set model: A further investigation

Bayesian rough set model (BRSM), as the hybrid development between rough set theory and Bayesian reasoning, can deal with many practical problems which could not be effectively handled by original rough set model. In this paper, the equivalence between two kinds of current attribute reduction models in BRSM for binary decision problems is proved. Furthermore, binary decision problems are extended to multi-decision problems in BRSM. Some monotonic measures of approximation quality for multi-decision problems are presented, with which attribute reduction models for multi-decision problems can be suitably constructed. What is more, the discernibility matrices associated with attribute reduction for binary decision and multi-decision problems are proposed, respectively. Based on them, the approaches to knowledge reduction in BRSM can be obtained which corresponds well to the original rough set methodology.

[1]  Zdzislaw Pawlak,et al.  A rough set view on Bayes' theorem , 2003, Int. J. Intell. Syst..

[2]  C. Anantaram,et al.  Verification of Accuracy of Rules in a Rule Based System , 1998, Data Knowl. Eng..

[3]  Malcolm J. Beynon,et al.  The introduction and utilization of (l, u)‐graphs in the extended variable precision rough sets model , 2003, Int. J. Intell. Syst..

[4]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[5]  Dominik Slezak,et al.  Rough Sets and Bayes Factor , 2005, Trans. Rough Sets.

[6]  Zdzisław Pawlak New look on Bayes' theorem The rough set outlook II , 2001 .

[7]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[8]  Yiyu Yao,et al.  Probabilistic approaches to rough sets , 2003, Expert Syst. J. Knowl. Eng..

[9]  Wojciech Ziarko,et al.  Probabilistic Rough Sets , 2005, RSFDGrC.

[10]  Dominik Slezak The Rough Bayesian Model for Distributed Decision Systems , 2004, Rough Sets and Current Trends in Computing.

[11]  Srilatha Chebrolu,et al.  Attribute Reduction in Decision-Theoretic Rough Set Models Using Genetic Algorithm , 2011, SEMCCO.

[12]  Wojciech Ziarko,et al.  Probabilistic approach to rough sets , 2008, Int. J. Approx. Reason..

[13]  Zdzislaw Pawlak Bayes' Theorem Revised - The Rough Set View , 2001, JSAI Workshops.

[14]  Kin Keung Lai,et al.  Variable precision rough set for group decision-making: An application , 2008, Int. J. Approx. Reason..

[15]  Wojciech Kotlowski,et al.  Stochastic dominance-based rough set model for ordinal classification , 2008, Inf. Sci..

[16]  Wojciech Ziarko Set Approximation Quality Measures in the Variable Precision Rough Set Model , 2002, HIS.

[17]  Ajoy Kumar Ray,et al.  Color image segmentation: Rough-set theoretic approach , 2008, Pattern Recognit. Lett..

[18]  Chao-Ton Su,et al.  Precision parameter in the variable precision rough sets model: an application , 2006 .

[19]  Sankar K. Pal,et al.  Roughness of a Fuzzy Set , 1996, Inf. Sci..

[20]  Malcolm J. Beynon The Elucidation of an Iterative Procedure to beta-Reduct Selection in the Variable Precision Rough Sets Model , 2004, Rough Sets and Current Trends in Computing.

[21]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[22]  Wojciech Ziarko,et al.  Variable Precision Rough Sets with Asymmetric Bounds , 1993, RSKD.

[23]  Mitsuo Nagamachi,et al.  Variable Precision Bayesian Rough Set Model and Its Application to Human Evaluation Data , 2005, RSFDGrC.

[24]  Fei-Yue Wang,et al.  Reduction and axiomization of covering generalized rough sets , 2003, Inf. Sci..

[25]  Kenneth Revett,et al.  A Hybrid Approach to MR Imaging Segmentation Using Unsupervised Clustering and Approximate Reducts , 2005, RSFDGrC.

[26]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[27]  Nick Cercone,et al.  Discovering rules for water demand prediction: An enhanced rough-set approach☆ , 1996 .

[28]  Wojciech Ziarko Stochastic Approach to Rough Set Theory , 2006, RSCTC.

[29]  Dominik Slezak,et al.  Attribute Reduction in the Bayesian Version of Variable Precision Rough Set Model , 2003, RSKD.

[30]  Yiyu Yao,et al.  Attribute reduction in decision-theoretic rough set models , 2008, Inf. Sci..

[31]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[32]  Dominik Slezak,et al.  Variable Precision Bayesian Rough Set Model , 2003, RSFDGrC.

[33]  Salvatore Greco,et al.  Parameterized rough set model using rough membership and Bayesian confirmation measures , 2008, Int. J. Approx. Reason..

[34]  Jie Zhou,et al.  Research of reduct features in the variable precision rough set model , 2009, Neurocomputing.

[35]  Yiyu Yao,et al.  Probabilistic rough sets: Approximations, decision-makings, and applications , 2008, Int. J. Approx. Reason..

[36]  Joseph P. Herbert,et al.  Criteria for choosing a rough set model , 2009, Comput. Math. Appl..

[37]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[38]  Malcolm J. Beynon,et al.  Reducts within the variable precision rough sets model: A further investigation , 2001, Eur. J. Oper. Res..

[39]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[40]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[41]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[42]  Yiyu Yao,et al.  Decision-Theoretic Rough Set Models , 2007, RSKT.

[43]  Hideo Tanaka,et al.  Variable Precision Bayesian Rough Set Model and Its Application to Kansei Engineering , 2008, Trans. Rough Sets.

[44]  Qiang Shen,et al.  A rough-fuzzy approach for generating classification rules , 2002, Pattern Recognit..

[45]  Constantin Zopounidis,et al.  Business failure prediction using rough sets , 1999, Eur. J. Oper. Res..

[46]  Krzysztof Krawiec,et al.  ROUGH SET REDUCTION OF ATTRIBUTES AND THEIR DOMAINS FOR NEURAL NETWORKS , 1995, Comput. Intell..

[47]  Dominik Slezak,et al.  The investigation of the Bayesian rough set model , 2005, Int. J. Approx. Reason..