Therapeutic potential of G-protein coupled receptor kinases in the heart.

The actions of G-protein coupled receptor kinases (GRKs) critically regulate beta-adrenergic receptor (betaAR) signalling. In the cardiovascular system, the betaAR signalling pathway controls important responses of the heart such as the ability to contract (inotropy), the ability to contract faster (chronotropy) and the ability to relax (lusotropy). The observation that the betaAR kinase (betaARK1, also known as GRK2), the most abundant GRK in the heart, is increased in cardiovascular disease associated with impaired cardiac function, suggests that this molecule could have pathophysiological relevance in the setting of heart failure. Technological advances in the genetic engineering of mice have provided a powerful tool to study the physiological implications of altering GRK activity and expression in the heart. Recent studies have demonstrated that betaARK1 plays a key role in not only the regulation of myocardial signalling, but also in cardiac function and development. Importantly, targeting the activity of GRKs, and betaARK1 in particular, appears to represent a novel therapeutic strategy for the treatment of the failing heart. At present, gene therapy modalities are being tested which inhibit the activity of betaARK1 in the heart. This technology makes it possible to test directly whether betaARK1 inhibition in the setting of heart disease will improve the function of the compromised heart. Thus, these genetic approaches or the development of small molecule inhibitors of GRK activity, may lead to novel therapeutic approaches for cardiovascular disease.

[1]  R. Lefkowitz,et al.  β-Adrenergic Receptor Kinase-1 Levels in Catecholamine-Induced Myocardial Hypertrophy Regulation by β- but not α1-Adrenergic Stimulation , 1999 .

[2]  R. Willette,et al.  The myocardial beta-adrenergic system in spontaneously hypertensive heart failure (SHHF) rats. , 1999, Hypertension.

[3]  Robert J. Lefkowitz,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[4]  Marc G. Caron,et al.  Control of Myocardial Contractile Function by the Level of β-Adrenergic Receptor Kinase 1 in Gene-targeted Mice* , 1998, The Journal of Biological Chemistry.

[5]  J. Ross,et al.  Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Lefkowitz,et al.  Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Cho,et al.  Transgenic Mice with Cardiac Overexpression of α1B-Adrenergic Receptors , 1997, The Journal of Biological Chemistry.

[8]  J. Benovic,et al.  Regulation of G Protein-coupled Receptor Kinases by Calmodulin and Localization of the Calmodulin Binding Domain* , 1997, The Journal of Biological Chemistry.

[9]  W. Koch,et al.  Mechanism of β-Adrenergic Receptor Desensitization in Cardiac Hypertrophy Is Increased β-Adrenergic Receptor Kinase* , 1997, The Journal of Biological Chemistry.

[10]  R. Stoffel,et al.  Receptor and G betagamma isoform-specific interactions with G protein-coupled receptor kinases. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Benovic,et al.  Regulation of the G Protein-coupled Receptor Kinase GRK5 by Protein Kinase C* , 1997, The Journal of Biological Chemistry.

[12]  Minoru Hongo,et al.  MLP-Deficient Mice Exhibit a Disruption of Cardiac Cytoarchitectural Organization, Dilated Cardiomyopathy, and Heart Failure , 1997, Cell.

[13]  M. Elam,et al.  Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. , 1997, Circulation.

[14]  M. Caron,et al.  Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. de Blasi,et al.  Inhibition of G Protein-coupled Receptor Kinase Subtypes by Ca2+/Calmodulin* , 1996, The Journal of Biological Chemistry.

[16]  R. Stoffel,et al.  Phosphatidylinositol 4,5-Bisphosphate (PIP2)-enhanced G Protein-coupled Receptor Kinase (GRK) Activity: LOCATION, STRUCTURE, AND REGULATION OF THE PIP2 BINDING SITE DISTINGUISHES THE GRK SUBFAMILIES* , 1996, The Journal of Biological Chemistry.

[17]  R. Lefkowitz,et al.  Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Lohse,et al.  Activation of β-Adrenergic Receptor Kinase During Myocardial Ischemia , 1996 .

[19]  R. Lefkowitz,et al.  Identification of the G Protein-coupled Receptor Kinase Phosphorylation Sites in the Human β2-Adrenergic Receptor* , 1996, The Journal of Biological Chemistry.

[20]  R. Lefkowitz,et al.  Phosphorylation of the Type 1A Angiotensin II Receptor by G Protein-coupled Receptor Kinases and Protein Kinase C* , 1996, The Journal of Biological Chemistry.

[21]  J. Cohn,et al.  The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. , 1996, The New England journal of medicine.

[22]  M. Lohse,et al.  Protein kinase cross-talk: membrane targeting of the beta-adrenergic receptor kinase by protein kinase C. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Benovic,et al.  Effect of Different G Protein-coupled Receptor Kinases on Phosphorylation and Desensitization of the -Adrenergic Receptor (*) , 1996, The Journal of Biological Chemistry.

[24]  K. Urasawa,et al.  Enhanced expression of beta-adrenergic receptor kinase 1 in the hearts of cardiomyopathic Syrian hamsters, BIO53.58. , 1996, Biochemical and biophysical research communications.

[25]  J. Freedman,et al.  Structure and Expression of Novel Spliced Leader RNA Genes in Caenorhabditis elegans(*) , 1995, The Journal of Biological Chemistry.

[26]  H. Levine,et al.  Phosphorylation and Activation of β-Adrenergic Receptor Kinase by Protein Kinase C (*) , 1995, The Journal of Biological Chemistry.

[27]  M. Caron,et al.  Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. , 1995, The Journal of biological chemistry.

[28]  R. Lefkowitz,et al.  Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. , 1995, Science.

[29]  Julie A. Pitcher,et al.  Pleckstrin Homology Domain-mediated Membrane Association and Activation of the -Adrenergic Receptor Kinase Requires Coordinate Interaction with G Subunits and Lipid(*) , 1995, The Journal of Biological Chemistry.

[30]  P. Ping,et al.  Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart. , 1995, The Journal of clinical investigation.

[31]  R. Lefkowitz,et al.  Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Benovic,et al.  Phospholipid-stimulated autophosphorylation activates the G protein-coupled receptor kinase GRK5. , 1994, The Journal of biological chemistry.

[33]  M. Böhm,et al.  Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. , 1994, Circulation research.

[34]  J. Benovic,et al.  Expression, purification, and characterization of the G protein-coupled receptor kinase GRK5. , 1994, The Journal of biological chemistry.

[35]  R. Lefkowitz,et al.  Structure and mechanism of the G protein-coupled receptor kinases. , 1993, The Journal of biological chemistry.

[36]  I. Meredith,et al.  Cardiac Sympathetic Nervous Activit in Congestive Heart Failure Evidence for Increased Neuronal Norepinephrine Release and Preserved Neuronal Uptake , 1993, Circulation.

[37]  R. Lefkowitz,et al.  The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. , 1993, The Journal of biological chemistry.

[38]  M. Böhm,et al.  Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. , 1993, Circulation.

[39]  J. B. Higgins,et al.  Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. , 1992, Science.

[40]  O. Brodde Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. , 1991, Pharmacological reviews.

[41]  J. Thorner,et al.  Model systems for the study of seven-transmembrane-segment receptors. , 1991, Annual review of biochemistry.

[42]  P. Korner,et al.  Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. , 1986, Circulation.

[43]  D C Harrison,et al.  Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. , 1982, The New England journal of medicine.