The Role of Chain-End Association Lifetime in Segmental and Chain Dynamics of Telechelic Polymers

Broadband dielectric spectroscopy, differential scanning calorimetry, and rheology were employed to study the impact of hydrogen (H)-bonding end-groups on segmental and chain dynamics of telechelic polypropylene glycol (PPG) and poly(dimethylsiloxane) (PDMS). Polymer chains with three types of H-bonding end-groups possessing different interaction strengths and a non-H-bonding end-group as reference were compared. The glass transition temperature (Tg) of H-bonding PPG systems with low molecular weight increases compared to the reference, and the Tg difference varies with chain-end interaction strength. In contrast, their shear viscosities (for Tg-scaled temperature, i.e., when the shift in Tg is accounted for) are similar to that one of the reference. This is in strong contrast to the behavior of telechelic PDMS with the same set of end-groups, where the Tg increase of all H-bonding systems is independent of H-bond strengths, while shear viscosity increases significantly only for the strongest H-bonding en...

[1]  A. Sokolov,et al.  Superstretchable, Self‐Healing Polymeric Elastomers with Tunable Properties , 2018 .

[2]  D. Richter,et al.  The microscopic origin of the rheology in supramolecular entangled polymer networks , 2017 .

[3]  M. Appavou,et al.  Melt dynamics of supramolecular comb polymers: Viscoelastic and dielectric response , 2017 .

[4]  J. Dyre,et al.  Simple-liquid dynamics emerging in the mechanical shear spectra of poly(propylene glycol) , 2017, Colloid and Polymer Science.

[5]  Florian Herbst,et al.  What Controls the Structure and the Linear and Nonlinear Rheological Properties of Dense, Dynamic Supramolecular Polymer Networks? , 2017 .

[6]  D. Richter,et al.  Importance of Compact Random Walks for the Rheology of Transient Networks. , 2017, ACS macro letters.

[7]  O. Urakawa,et al.  Experimental Test for Viscoelastic Relaxation of Polyisoprene Undergoing Monofunctional Head-to-Head Association and Dissociation , 2016 .

[8]  Florian Herbst,et al.  Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network , 2016, Scientific Reports.

[9]  F. Stadler,et al.  Hydrogen Bonding in a Reversible Comb Polymer Architecture: A Microscopic and Macroscopic Investigation , 2016 .

[10]  A. Sokolov,et al.  Impact of Hydrogen Bonding on Dynamics of Hydroxyl-Terminated Polydimethylsiloxane , 2016 .

[11]  Evelyne Van Ruymbeke,et al.  How Supramolecular Assemblies Control Dynamics of Associative Polymers: Toward a General Picture , 2016 .

[12]  Peter Lindner,et al.  Association Behavior, Diffusion, and Viscosity of End-Functionalized Supramolecular Poly(ethylene glycol) in the Melt State , 2015 .

[13]  C. Gainaru,et al.  Field-Cycling Relaxometry as a Molecular Rheology Technique: Common Analysis of NMR, Shear Modulus and Dielectric Loss Data of Polymers vs Dendrimers , 2015 .

[14]  S. Pensec,et al.  Linear Rheology of Supramolecular Polymers Center-Functionalized with Strong Stickers , 2015 .

[15]  Laurence G. D. Hawke,et al.  Dynamics of Entangled Linear Supramolecular Chains with Sticky Side Groups: Influence of Hindered Fluctuations , 2015 .

[16]  A. Shabbir,et al.  Effect of Hydrogen Bonding on Linear and Nonlinear Rheology of Entangled Polymer Melts , 2015 .

[17]  S. Pensec,et al.  Linear rheology of bis-urea functionalized supramolecular poly(butylacrylate)s: Part I – weak stickers , 2015 .

[18]  K. Grzybowska,et al.  Does the Johari–Goldstein β-Relaxation Exist in Polypropylene Glycols? , 2015 .

[19]  Xinxin Tan,et al.  Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. , 2015, Chemical reviews.

[20]  Lei You,et al.  Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. , 2015, Chemical reviews.

[21]  R. Weiss,et al.  Viscoelasticity of Reversible Gelation for Ionomers , 2015 .

[22]  Stephen Z. D. Cheng,et al.  Supramolecular Elastomers: Self-Assembling Star–Blocks of Soft Polyisobutylene and Hard Oligo(β-alanine) Segments , 2015 .

[23]  H. Frey,et al.  Rheological Consequences of Hydrogen Bonding: Linear Viscoelastic Response of Linear Polyglycerol and Its Permethylated Analogues as a General Model for Hydroxyl-Functional Polymers , 2015 .

[24]  C. Weder,et al.  Mechanochemistry with metallosupramolecular polymers. , 2014, Journal of the American Chemical Society.

[25]  Florian Herbst,et al.  Nanostructure and Rheology of Hydrogen-Bonding Telechelic Polymers in the Melt: From Micellar Liquids and Solids to Supramolecular Gels , 2014 .

[26]  K. Stewart,et al.  The Influence of Hydrogen Bonding Side-Groups on Viscoelastic Behavior of Linear and Network Polymers , 2014 .

[27]  J. Teixeira,et al.  Molecular Approach to Supramolecular Polymer Assembly by Small Angle Neutron Scattering , 2013 .

[28]  R. Colby,et al.  Ionomer dynamics and the sticky Rouse modela) , 2013 .

[29]  S. Seiffert,et al.  Chain Dynamics in Supramolecular Polymer Networks , 2013 .

[30]  F. Kremer,et al.  Comparative Study on the Molecular Dynamics of a Series of Polypropylene Glycols , 2013 .

[31]  C. Soulie-́Ziakovic,et al.  Suppression of mesoscopic order by complementary interactions in supramolecular polymers. , 2012, Journal of the American Chemical Society.

[32]  M. Cloître,et al.  Order-disorder transition in supramolecular polymers. , 2011, Journal of the American Chemical Society.

[33]  Jeffrey S. Moore,et al.  Materials chemistry: Spot-on healing , 2011, Nature.

[34]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[35]  R. Böhmer,et al.  A Dielectric Study of Oligo- and Poly(propylene glycol) , 2010 .

[36]  R. Böhmer,et al.  Oligomer-to-Polymer Transition of Poly-(propylene glycol) Revealed by Dielectric Normal Modes , 2009 .

[37]  S. Rowan,et al.  Supramolecular Polymerizations and Main-Chain Supramolecular Polymers , 2009 .

[38]  F. Stadler,et al.  Linear Viscoelastic Rheology of Moderately Entangled Telechelic Polybutadiene Temporary Networks , 2009 .

[39]  C. Goiceanu,et al.  Molecular Weight Dependence of Glassy Dynamics in Linear Polymers Revisited , 2008 .

[40]  A. Sokolov,et al.  Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture , 2008 .

[41]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[42]  K. Grzybowska,et al.  Anomalous behavior of secondary dielectric relaxation in polypropylene glycols , 2007 .

[43]  Isaiah Shavitt,et al.  Does the A.T or G.C base-pair possess enhanced stability? Quantifying the effects of CH...O interactions and secondary interactions on base-pair stability using a phenomenological analysis and ab initio calculations. , 2007, Journal of the American Chemical Society.

[44]  K. Grzybowska,et al.  Dielectric secondary relaxations in polypropylene glycols. , 2006, The Journal of chemical physics.

[45]  E. W. Meijer,et al.  Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers , 2006 .

[46]  M. Weck,et al.  Noncovalently Functionalized Block Copolymers Possessing Both Hydrogen Bonding and Metal Coordination Centers , 2006 .

[47]  J. Dudowicz,et al.  The glass transition temperature of polymer melts. , 2005, The journal of physical chemistry. B.

[48]  J. Dudowicz,et al.  Fragility of glass-forming polymer liquids. , 2005, The journal of physical chemistry. B.

[49]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[50]  Marcus Weck,et al.  Non-covalent side-chain polymers: design principles, functionalization strategies, and perspectives. , 2005, Chemical Society reviews.

[51]  M. Paluch,et al.  Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure , 2003 .

[52]  Atsushi Harada,et al.  Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. , 2003, Angewandte Chemie.

[53]  I. Alig,et al.  Phase behaviour of mixtures of polyethylene glycol and polypropylene glycol: Influence of hydrogen bond clusters on the phase diagram , 2002 .

[54]  A. Semenov,et al.  Dynamics of Entangled Associating Polymers with Large Aggregates , 2002 .

[55]  J. Swenson,et al.  Dynamics of propylene glycol and its 7-mer by neutron scattering , 2002 .

[56]  Michael Rubinstein,et al.  Dynamics of Entangled Solutions of Associating Polymers , 2001 .

[57]  E. W. Meijer,et al.  Supramolecular Polymers , 2000 .

[58]  H. Wagner,et al.  Equilibrium and Non-Equilibrium Type β-Relaxations: D-Sorbitol versus o-Terphenyl , 1999 .

[59]  A. Schönhals,et al.  Broadband dielectric study of anomalous diffusion in a poly(propylene glycol) melt confined to nanopores , 1998 .

[60]  G. Floudas,et al.  Dynamics of Linear and Star Poly(oxypropylene) Studied by Dielectric Spectroscopy and Rheology , 1998 .

[61]  Michael Rubinstein,et al.  Thermoreversible Gelation in Solutions of Associative Polymers. 1. Statics , 1998 .

[62]  A. Semenov,et al.  Thermoreversible Gelation in Solutions of Associating Polymers. 2. Linear Dynamics , 1998 .

[63]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[64]  Minmin Tian,et al.  Influence of Hydroxyl Terminal Groups on the Ionic Speciation and Ionic Conductivity in Complexes of Poly(propylene glycol)(4000) and LiCF3SO3Salt , 1997 .

[65]  A. Ferry Ionic Interactions and Transport Properties in Methyl Terminated Poly(propylene glycol)(4000) Complexed with LiCF3SO3 , 1997 .

[66]  R. Lokey,et al.  Synthetic molecules that fold into a pleated secondary structure in solution , 1995, Nature.

[67]  T. J. Murray,et al.  New triply hydrogen bonded complexes with highly variable stabilities , 1992 .

[68]  L. Leibler,et al.  Dynamics of reversible networks , 1991 .

[69]  A. Hamilton,et al.  Molecular recognition of biologically interesting substrates: synthesis of an artificial receptor for barbiturates employing six hydrogen bonds , 1988 .

[70]  Michael E. Cates,et al.  Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions , 1987 .

[71]  C. H. Wang,et al.  Laser light beating spectroscopic studies of dynamics in bulk polymers: poly(propylene glycol) , 1981 .

[72]  G. Harrison,et al.  Creep, creep recovery and dynamic mechanical measurements of a poly(propylene glycol) oligomer , 1980 .

[73]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[74]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[75]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[76]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[77]  T. Kotaka,et al.  Dielectric normal mode relaxation , 1993 .