Dependences of ionic conductivity and activation energy on germanium content in superionic Li1.4Al0.4GexTi(1.6 – x)(PO4)3 solid electrolytes

[1]  Tianyuan Wang,et al.  A High‐performance Lithium Metal Battery with a Multilayer Hybrid Electrolyte , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[2]  Jia Xie,et al.  Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite , 2020 .

[3]  Yong-nian Dai,et al.  Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries , 2019, Nanotechnology.

[4]  Hui Wang,et al.  Synthesis and Properties of NASICON-type LATP and LAGP Solid Electrolytes. , 2019, ChemSusChem.

[5]  Chunwen Sun,et al.  Effects of Fluorine Doping on Structural and Electrochemical Properties of Li6.25Ga0.25La3Zr2O12 as Electrolytes for Solid-State Lithium Batteries. , 2018, ACS applied materials & interfaces.

[6]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[7]  N. Chen,et al.  A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery , 2018 .

[8]  Ru‐Shi Liu,et al.  Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries , 2017 .

[9]  Xiulei Ji,et al.  NASICON‐Structured Materials for Energy Storage , 2017, Advanced materials.

[10]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[11]  D. Kanchan,et al.  Effect of doping of trivalent cations Ga 3+ , Sc 3+ , Y 3+ in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) system on Li + ion conductivity , 2016 .

[12]  L. Wüllen,et al.  Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1 + xAlxGe2 − x(PO4)3 , 2016 .

[13]  Fei Du,et al.  NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[14]  R. Jiménez,et al.  High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5) , 2015 .

[15]  Z. Wen,et al.  Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method , 2011 .

[16]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[17]  Kazunari Yoshizawa,et al.  Lithium ion migration pathways in LiTi2(PO4)3 and related materials , 1999 .

[18]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[19]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[20]  Zhongyuan Huang,et al.  Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries , 2021 .

[21]  E. A. Il’ina,et al.  Effect of Li2O–Al2O3–GeO2–P2O5 glass crystallization on stability versus molten lithium , 2020 .