Models for construction of multivariate dependence

In this article we review models for construction of higher-dimensional dependence that have arisen recent years. A multivariate data set, which exhibit complex patterns of dependence, particularly in the tails, can bemodelled using a cascade of lower-dimensional copulae. We examine two such models that differ in their construction of the dependency structure, namely the nested Archimedean constructions and the pair-copula constructions (also referred to as vines). The constructions are compared, and estimationand simulation techniques are examined. The fit of the two constructions is tested on two different four-dimensional data sets; precipitation values and equity returns, using a state of the art copula goodness-of-fit procedure. The nested Archimedean construction is strongly rejected for both our data sets, while the pair-copula construction provides an appropriate fit. Through VaR calculations, we show that the latter does not overfit data, but works very well even out-of-sample.

[1]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[2]  Marius Hofert,et al.  Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..

[3]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[4]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[5]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[6]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[7]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[8]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[9]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[10]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[11]  Patricia M. Morillas,et al.  A method to obtain new copulas from a given one , 2005 .

[12]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[13]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[14]  R. Nelsen An Introduction to Copulas , 1998 .

[15]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[16]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[17]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[18]  A. Zeevi,et al.  Beyond Correlation: Extreme Co-Movements between Financial Assets , 2002 .

[19]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[20]  H. Joe Multivariate models and dependence concepts , 1998 .

[21]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[22]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[23]  D. Oakes Multivariate survival distributions , 1994 .

[24]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[25]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[26]  P. D. Jongh,et al.  Risk estimation using the normal inverse Gaussian distribution , 2001 .

[27]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[28]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[29]  Niall Whelan,et al.  Sampling from Archimedean copulas , 2004 .

[30]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[31]  Martin Odening,et al.  Modeling and Hedging Rain Risk , 2006 .

[32]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[33]  Selecting an innovation distribution for Garch models to improve efficiency of risk and volatility estimation , 2004 .

[34]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[35]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[36]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[37]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[38]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[39]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[40]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .