Extracting information for biology

High-throughput methods like the large scale sequencing of the human genome dramatically increase our knowledge of genetics and related biological processes. As a consequence these results accelerate the pace of research and development in the field of biomedicine. The overall goal of these research efforts is to obtain new findings about diseases in order to improve human health. However, these advances are responsible for an increase in complexity and a need for understanding when applying biomedical research and data. Meanwhile there is a strong agreement within life-science related academic laboratories and industry that addressing the complexity of biological data and knowledge entails intense interdisciplinary efforts. A major requirement for interdisciplinary research within life sciences is to correlate the data that is derived from text with data from experiments in biomedical laboratories (and with patient records). The main contribution of this work is to describe how natural language processing (NLP) methods and systems can fulfill this requirement by categorising, structuring and exploiting the massive amount of textual data available and in integrating the results with data derived from biomedical experiments. The present work is thematically divided into three parts. The first part is about text mining in the life sciences and is subdivided in two subsections. Subsection I presents an introduction to effective natural language processing techniques for identifying and retrieving information from large text collections. Furthermore it presents the characteristic features of biomedical terminology, which comprise synonymic, homonymic, orthographical, paragrammatical as well as other types of variance. This illustrates that the crucial difference between everyday language and the language used within biomedical scientific literature is mainly based on the difference of the terminology used. This subsection concludes with a description of basic criteria that an information extraction system has to meet. The implementation of such an information extraction system is described in the second subsection. This section documents a pilot study that was carried out in close collaboration with both the SDBV (Scientific DataBases and Visualisation) group of EML Research gGmbH and Peer Bork's group at the EMBL (European Molecular Biology Laboratory) both located in Heidelberg. The system implemented is used for the extraction of information on gene expression relations from biomedical scientific publications. The second part III focuses on the transfer of a computational linguistic tool (TIGERSearch), which was originally developed for the querying of hierarchical structures, to querying knowledge on protein domains from a protein database. It is demonstrated that TIGERSearch offers the possibility to make implicit knowledge about protein domains explicit by transforming the database entries to TIGERSearch-XML. In addition, TIGERSearch makes this implicit knowledge graphically visible. In fact, TigerSearch was initially developed for the querying and transparent representation of syntactically annotated corpora, so-called treebanks. This part also points out the problem that mapping the wide range of natural language annotations to precisely defined concepts presupposed by the search engine requires an ontological modelling of the domain. The third part addresses the problem of ontological modelling in a more general and more comprehensive way. It consists of two chapters. The first chapter introduces basic notions of ontologies as well as an overview of guidelines to be considered when building an ontology. In addition some examples of implemented (both general and biomedical) ontologies are presented. The second chapter presents an axiomatisation of a sub-domain of molecular biology (i.e. gene expression) that comprises the domain of proteins and their domains. The thesis demonstrates a highly interdisciplinary approach for text mining in the life sciences. Methods and knowledge from the fields of natural language processing, bioinformatics and biology have been successfully combined with knowledge from cell-biology and the problem of extracting knowledge from unstructured or partially structured data. Im Rahmen der vorliegenden Arbeit habe ich Methoden der Computerlinguistik diskutiert, erarbeitet und eingesetzt, um eine maschinelle Extraktion biomedizinischer Daten aus wissenschaftlichen Publikationen und Datenbanken zu ermoglichen. Im wesentlichen habe ich dabei drei Themengebiete bearbeitet. Im ersten Teil der Arbeit stelle ich eine Pilotstudie vor, die die Methoden der Informationsextraktion anwendet, um fur eine vordefinierte Fragestellung Antworten aus grosen Mengen biomedizinischer Texte zu extrahieren. Diese Arbeit ist von unmittelbarer biologischer Relevanz. Denn nachdem diese Arbeit in enger Kollaboration zwischen der SDBV (Scientific DataBases and Visualisation) Gruppe der EML Research gGmbH und der Gruppe um Peer Bork des EMBL (Europaisches Molekularbiologie Labor) entstanden ist, wird das System zur Extraktion von Genexpressionsdaten am EMBL eingesetzt. Im zweiten Teil der Arbeit stelle ich Einsatzmoglichkeiten der TigerSearch Suchmaschine im molekularbiologischen Kontext vor. TigerSearch wurde fur die Suche auf syntaktisch annotierten Satzen entwickelt. Ich habe sie ausgewahlt, um strukturierte Information uber Proteindomanen transparent darzustellen und komplexe Anfragen bearbeiten zu konnen. Der letzte Teil der Arbeit beschaftigt sich mit der Modellierung biologischen Wissens. Dabei steht die formale Reprasentation biologisch relevanter Konzepte im Vordergrund. Als wesentliches Merkmal der vorliegenden Arbeit mochte ich den interdisziplinaren Charakter betonen, vor allem, weil interdisziplinare Forschung nicht nur in der Bioinformatik, sondern auch in anderen Forschungsfeldern zunehmend an Bedeutung gewinnt.

[1]  David Hawking,et al.  Overview of the TREC 2003 Web Track , 2003, TREC.

[2]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[3]  J. Rigaudy,et al.  Nomenclature of organic chemistry , 1979 .

[4]  Pasi Tapanainen,et al.  What is a word, What is a sentence? Problems of Tokenization , 1994 .

[5]  李幼升,et al.  Ph , 1989 .

[6]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[7]  Eric Brill,et al.  A Simple Rule-Based Part of Speech Tagger , 1992, HLT.

[8]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[9]  Donna K. Harman,et al.  The Development and Evolution of TREC and DUC , 2002, NTCIR.

[10]  D. Schomburg,et al.  BRENDA: a resource for enzyme data and metabolic information. , 2002, Trends in biochemical sciences.

[11]  John O'Neill,et al.  The Genome Sequence DataBase (GSDB): meeting the challenge of genomic sequencing , 1996, Nucleic Acids Res..

[12]  Nicola Guarino,et al.  Ontologies and Knowledge Bases. Towards a Terminological Clarification , 1995 .

[13]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[14]  K. Vollhardt,et al.  Organic Chemistry: Structure and Function , 1987 .

[15]  Achille C. Varzi,et al.  Holes and Other Superficialities , 1994 .

[16]  Nicola Guarino UNDERSTANDING, BUILDING, AND USING ONTOLOGIES , 1997 .

[17]  Daniele Nardi,et al.  An Introduction to Description Logics , 2003, Description Logic Handbook.

[18]  Donna K. Harman,et al.  Overview of the TREC 2003 Novelty Track , 2003, TREC.

[19]  Barry Smith,et al.  The Universal Medical Language System and the Gene Ontology: Some Critical Reflections , 2003, KI.

[20]  Anthony G. Cohn,et al.  Formalising bio-spatial knowledge , 2001, FOIS.

[21]  Alexander A. Morgan,et al.  Overview of BioCreAtIvE task 1B: normalized gene lists , 2005, BMC Bioinformatics.

[22]  Andreas Abecker,et al.  Ontologies for Knowledge Management , 2004, Handbook on Ontologies.

[23]  André Goffeau,et al.  The yeast genome directory. , 1997, Nature.

[24]  M. Kanehisa A database for post-genome analysis. , 1997, Trends in genetics : TIG.

[25]  Alex Lascarides,et al.  Temporal interpretation, discourse relations and commonsense entailment , 1993, The Language of Time - A Reader.

[26]  Uwe Sauer,et al.  Modelling gene expression using stochastic simulation , 2004 .

[27]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[28]  Sue Povey,et al.  Genew: the Human Gene Nomenclature Database, 2004 updates , 2004, Nucleic Acids Res..

[29]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[30]  Fredrik Olsson,et al.  Protein names and how to find them , 2002, Int. J. Medical Informatics.

[31]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[32]  Roberto Casati,et al.  Spatial Entities , 1997 .

[33]  Beatrice Alex,et al.  BioCreative Task 2.1. The Edinburgh-Stanford System , 2004 .

[34]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[35]  Zeno Vendler,et al.  Verbs and Times , 1957, The Language of Time - A Reader.

[36]  Erik M. van Mulligen,et al.  Ambiguity of Human Gene Symbols in LocusLink and MEDLINE: Creating an Inventory and a Disambiguation Test Collection , 2003, AMIA.

[37]  Peer Bork,et al.  Large-scale Extraction of Protein/Gene Relations for Model Organisms , 2005 .

[38]  Christopher G. Chute,et al.  Domain-specific language models and lexicons for tagging , 2005, J. Biomed. Informatics.

[39]  Malvina Nissim,et al.  A System for Identifying Named Entities in Biomedical Text: how Results From two Evaluations Reflect on Both the System and the Evaluations , 2005, Comparative and functional genomics.

[40]  Lars Juhl Jensen,et al.  Large-scale extraction of gene regulation for model organisms in an ontological context , 2004, Silico Biol..

[41]  Miguel A. Andrade-Navarro,et al.  Information extraction from full text scientific articles: Where are the keywords? , 2003, BMC Bioinformatics.

[42]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[43]  I. Bregovec,et al.  A Guide to IUPAC Nomenclature of Organic Compounds , 2002 .

[44]  Peer Bork,et al.  Extraction of regulatory gene/protein networks from Medline , 2006, Bioinform..

[45]  Jerry R. Hobbs Information extraction from biomedical text , 2002, J. Biomed. Informatics.

[46]  Uwe Reyle Understanding chemical terminology , 2006 .

[47]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[48]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[49]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[50]  Christof Monz,et al.  From document retrieval to question answering , 2003 .

[51]  Matthew Berriman,et al.  GeneDB: a resource for prokaryotic and eukaryotic organisms , 2004, Nucleic Acids Res..

[52]  Stanley Letovsky,et al.  Improvements to the GDB Human Genome Data Base , 1996, Nucleic Acids Res..

[53]  Beatrice Santorini,et al.  Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd Revision) , 1990 .

[54]  Peer Bork,et al.  Extracting Regulatory Gene Expression Networks From Pubmed , 2004, ACL.

[55]  Mathew W. Wright,et al.  Guidelines for human gene nomenclature. , 2002, Genomics.

[56]  Jun'ichi Tsujii,et al.  GENIA corpus - a semantically annotated corpus for bio-textmining , 2003, ISMB.

[57]  Nicola Guarino,et al.  Formal Ontology in Information Systems , 1998 .

[58]  Uwe Reyle,et al.  Ontology-driven discourse analysis for information extraction , 2005, Data Knowl. Eng..

[59]  Hector J. Levesque,et al.  Expressiveness and tractability in knowledge representation and reasoning 1 , 1987, Comput. Intell..

[60]  Nicola Guarino,et al.  Sweetening Ontologies with DOLCE , 2002, EKAW.

[61]  J. Dow,et al.  The dictionary of cell and molecular biology , 1999 .

[62]  James Allan,et al.  HARD Track Overview in TREC 2003: High Accuracy Retrieval from Documents , 2003, TREC.

[63]  Renate Kania,et al.  Classification of Chemical Compounds to Support Complex Queries in a Pathway Database , 2004, Comparative and functional genomics.

[64]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[65]  Wolfgang Lezius,et al.  The TIGER language. - A Description Language for Syntax Graphs , 2000 .

[66]  Yuji Matsumoto,et al.  Protein Name Tagging for Biomedical Annotation in Text , 2003, BioNLP@ACL.

[67]  Lynette Hirschman,et al.  Overview: Information Extraction From Broadcast News , 1999 .

[68]  D. Aaronson,et al.  A Road Map for Those Who Don't Know JAK-STAT , 2002, Science.

[69]  Steffen Schulze-Kremer,et al.  Ontologies for Molecular Biology , 2001, Electron. Trans. Artif. Intell..

[70]  Nigel Collier,et al.  Automatic acquisition and classification of terminology using a tagged corpus in the molecular biology domain , 2001 .

[71]  D. Lindberg,et al.  Unified Medical Language System , 2020, Definitions.

[72]  Elaine Marsh,et al.  MUC-7 Evaluation of IE Technology: Overview of Results , 1998, MUC.

[73]  W. H. Powell,et al.  A guide to IUPAC nomenclature of organic compounds : recommendations 1993 , 1994 .

[74]  Asunción Gómez-Pérez,et al.  Ontological Engineering: With Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web , 2004, Advanced Information and Knowledge Processing.

[75]  Paul W. Sternberg,et al.  WormBase: network access to the genome and biology of Caenorhabditis elegans , 2001, Nucleic Acids Res..

[76]  Olivier Bodenreider,et al.  Mapping the UMLS Semantic Network into general ontologies , 2001, AMIA.

[77]  Alexander A. Morgan,et al.  BioCreAtIvE Task 1A: gene mention finding evaluation , 2005, BMC Bioinformatics.

[78]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO) , 2002, Nucleic Acids Res..

[79]  T. Takagi,et al.  Toward information extraction: identifying protein names from biological papers. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[80]  Helmut Schmid Unsupervised Learning of Period Disambiguation for Tokenisation , 2000 .

[81]  Beatrice Santorini Part-of-speech tagging guidelines for the penn treebank project , 1990 .

[82]  Martin Vingron,et al.  IntAct: an open source molecular interaction database , 2004, Nucleic Acids Res..

[83]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[84]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[85]  Rolf Apweiler,et al.  Swissknife - 'lazy parsing' of SWISS-PROT entries , 1999, Bioinform..

[86]  Hadumod Bußmann Lexikon der Sprachwissenschaft: EDV-gestützte Redaktion und Herstellung: ein Werkstattbericht , 1993 .

[87]  Peter Willett,et al.  Readings in information retrieval , 1997 .

[88]  Steffen Staab,et al.  Semi-Automatic Engineering of Ontologies from Text , 2000, ICSE 2000.

[89]  Peer Bork,et al.  The way we write , 2003, EMBO Reports.

[90]  Goran Nenadic,et al.  Selecting Text Features for Gene Name Classification: from Documents to Terms , 2003, BioNLP@ACL.

[91]  J. Rigaudy,et al.  Nomenclature of organic chemistry: sections A, B, C, D, E, F and H - 1979 ed. , 1979 .

[92]  Ellen M. Voorhees,et al.  Overview of the TREC 2004 Robust Retrieval Track , 2004 .

[93]  Ellen M. Voorhees,et al.  Overview of the TREC 2002 Question Answering Track , 2003, TREC.

[94]  W. Gelbart The FlyBase database of the Drosophila Genome Projects and community literature. , 1999, Nucleic acids research.

[95]  James F. Allen,et al.  Actions and Events in Interval Temporal Logic , 1994 .

[96]  Uwe Reyle,et al.  From discourse to logic , 1993 .

[97]  Aldo Gangemi,et al.  Unsupervised Learning of Semantic Relations between Concepts of a Molecular Biology Ontology , 2005, IJCAI.

[98]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[99]  William R. Hersh,et al.  TREC GENOMICS Track Overview , 2003, TREC.

[100]  Philipp Cimiano Lavin On the resolution of bridging references within information extraction systems , 2003 .

[101]  Steven P. Abney Partial parsing via finite-state cascades , 1996, Natural Language Engineering.

[102]  K. Bretonnel Cohen,et al.  The Compositional Structure of Gene Ontology Terms , 2003, Pacific Symposium on Biocomputing.