Automatized Parameterization of DFTB Using Particle Swarm Optimization.

We present a novel density-functional tight-binding (DFTB) parametrization toolkit developed to optimize the parameters of various DFTB models in a fully automatized fashion. The main features of the algorithm, based on the particle swarm optimization technique, are discussed, and a number of initial pilot applications of the developed methodology to molecular and solid systems are presented.

[1]  Bálint Aradi,et al.  Automated Repulsive Parametrization for the DFTB Method. , 2011, Journal of chemical theory and computation.

[2]  G. Cuniberti,et al.  SCC-DFTB Parametrization for Boron and Boranes. , 2012, Journal of chemical theory and computation.

[3]  K. Morokuma,et al.  Automatized Parameterization of the Density-functional Tight-binding Method. II. Two-center Integrals , 2016 .

[4]  Stephan Irle,et al.  Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. , 2004, The Journal of chemical physics.

[5]  Claudia Draxl,et al.  exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Michael Gaus,et al.  Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications , 2014, Journal of chemical theory and computation.

[7]  M. Elstner,et al.  Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. , 2005, The Journal of chemical physics.

[8]  C. Cramer,et al.  Water clusters to nanodrops: a tight-binding density functional study. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Hong Jiang,et al.  FHI-gap: A GW code based on the all-electron augmented plane wave method , 2013, Comput. Phys. Commun..

[10]  D. York,et al.  Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization. , 2008, Journal of chemical theory and computation.

[11]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[12]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  Gilles H. Peslherbe,et al.  Parameterization of Halogens for the Density-Functional Tight-Binding Description of Halide Hydration. , 2013, Journal of chemical theory and computation.

[16]  Xiao Zhu,et al.  Establishing effective simulation protocols for β‐ and α/β‐peptides. III. Molecular mechanical model for acyclic β‐amino acids , 2010, Journal of computational chemistry.

[17]  Bernard R Brooks,et al.  Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms. , 2007, The journal of physical chemistry. A.

[18]  M. Elstner,et al.  Parametrization and Benchmark of DFTB3 for Organic Molecules. , 2013, Journal of chemical theory and computation.

[19]  Thomas Frauenheim,et al.  Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. , 2007, Journal of chemical theory and computation.

[20]  M. Hellström,et al.  An SCC-DFTB Repulsive Potential for Various ZnO Polymorphs and the ZnO–Water System , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[21]  S. Irle,et al.  Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20-C36. , 2007, The journal of physical chemistry. A.

[22]  Henryk A. Witek,et al.  Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra , 2004 .

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  S. Irle,et al.  Critical interpretation of CH- and OH- stretching regions for infrared spectra of methanol clusters (CH₃OH)n (n = 2-5) using self-consistent-charge density functional tight-binding molecular dynamics simulations. , 2014, The Journal of chemical physics.

[25]  S. Irle,et al.  Convergence in the evolution of nanodiamond Raman spectra with particle size: a theoretical investigation. , 2010, ACS nano.

[26]  T. Frauenheim,et al.  Residual stresses modelled by MD simulation applied to PVD DC sputter deposition , 2005 .

[27]  Thomas Frauenheim,et al.  Modeling zinc in biomolecules with the self consistent charge‐density functional tight binding (SCC‐DFTB) method: Applications to structural and energetic analysis , 2003, J. Comput. Chem..

[28]  K. Morokuma,et al.  Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method , 2005 .

[29]  Thomas Frauenheim,et al.  A complete set of self‐consistent charge density‐functional tight‐binding parametrization of zinc chalcogenides (ZnX; X=O, S, Se, and Te) , 2012, J. Comput. Chem..

[30]  Keiji Morokuma,et al.  Systematic study of vibrational frequencies calculated with the self‐consistent charge density functional tight‐binding method , 2004, J. Comput. Chem..

[31]  S. Suhai,et al.  Application of an approximate density-functional method to sulfur containing compounds , 2001 .

[32]  Yang Yang,et al.  Extensive conformational transitions are required to turn on ATP hydrolysis in myosin. , 2008, Journal of molecular biology.

[33]  Bálint Aradi,et al.  Parametrization of the SCC-DFTB Method for Halogens. , 2013, Journal of chemical theory and computation.

[34]  G. Scuseria,et al.  The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional , 2000 .

[35]  Michael Gaus,et al.  Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications , 2014, The journal of physical chemistry. B.

[36]  Puja Goyal,et al.  Application of the SCC-DFTB method to neutral and protonated water clusters and bulk water. , 2011, The journal of physical chemistry. B.

[37]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[38]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[39]  Chengchun Tang,et al.  Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm , 2012 .

[40]  Gregory A Voth,et al.  Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. , 2013, The journal of physical chemistry. B.

[41]  Jun-Ren Chen,et al.  Structural optimization of Pt-Pd alloy nanoparticles using an improved discrete particle swarm optimization algorithm , 2015, Comput. Phys. Commun..

[42]  K. Morokuma,et al.  Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70). , 2006, The Journal of chemical physics.

[43]  A. Sieck,et al.  Shape transition of medium‐sized neutral silicon clusters , 2003 .

[44]  K. Morokuma,et al.  Relativistic parametrization of the self-consistent-charge density-functional tight-binding method. 1. Atomic wave functions and energies. , 2007, The journal of physical chemistry. A.

[45]  Bálint Aradi,et al.  An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium. , 2010, Journal of chemical theory and computation.

[46]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[47]  Sohrab Zendehboudi,et al.  Prediction of Condensate-to-Gas Ratio for Retrograde Gas Condensate Reservoirs Using Artificial Neural Network with Particle Swarm Optimization , 2012 .

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  J. Schirber,et al.  Experimental Determination of the Low-Temperature Grüneisen Parameter of Silicon from Pressure Derivatives of Elastic Constants , 1970 .

[50]  Structural properties of metal‐organic frameworks within the density‐functional based tight‐binding method , 2011, 1109.5312.

[51]  Hui-Tian Wang,et al.  Superhard F-carbon predicted by ab initio particle-swarm optimization methodology , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  C. Hubbard,et al.  A silicon powder diffraction standard reference material , 1975 .

[53]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[54]  C. Adamo,et al.  Density-functional-based molecular-dynamics simulations of molten salts. , 2005, The Journal of chemical physics.

[55]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[56]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[57]  Hai-Long Wu,et al.  Adaptive variable-weighted support vector machine as optimized by particle swarm optimization algorithm with application of QSAR studies. , 2011, Talanta.

[58]  Lyuben Zhechkov,et al.  DFTB Parameters for the Periodic Table: Part 1, Electronic Structure. , 2013, Journal of chemical theory and computation.

[59]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[60]  R. H. Wentorf,et al.  Two New Forms of Silicon , 1963, Science.

[61]  S. Irle,et al.  Dramatic reduction of IR vibrational cross sections of molecules encapsulated in carbon nanotubes. , 2011, Journal of the American Chemical Society.

[62]  Shaoqing Wang,et al.  First-principles study on the lonsdaleite phases of C, Si and Ge , 2003 .

[63]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[64]  Efthimios Kaxiras,et al.  A QM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method , 2001 .

[65]  Michael Gaus,et al.  Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems. , 2015, Journal of chemical theory and computation.

[66]  Keiji Morokuma,et al.  Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra. , 2004, The Journal of chemical physics.

[67]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[68]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[69]  Vincenzo Barone,et al.  Silicon Nanocrystal Functionalization: Analytic Fitting of DFTB Parameters. , 2011, Journal of chemical theory and computation.

[70]  K. Morokuma,et al.  Computational study of molecular properties of aggregates of C60 and (16, 0) zigzag nanotube , 2007 .

[71]  U. Gerstmann,et al.  Approximate density-functional calculations of spin densities in large molecular systems and complex solids , 2001 .

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  H. Eschrig,et al.  An optimized LCAO version for band structure calculations application to copper , 1978 .

[74]  Yu Liu,et al.  FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm , 2013, J. Comput. Chem..

[75]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[76]  D. York,et al.  Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. , 2007, The journal of physical chemistry. A.

[77]  M. Elstner,et al.  Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. , 2009, The journal of physical chemistry. A.

[78]  Yaochun Shen,et al.  Wavelength-Modulation Spectra of Some Semiconductors , 1970 .

[79]  Zhiyong Li,et al.  A hybrid algorithm based on particle swarm and chemical reaction optimization , 2014, Expert Syst. Appl..

[80]  T. Frauenheim,et al.  Initial steps toward automating the fitting of DFTB Erep(r). , 2007, The journal of physical chemistry. A.

[81]  Sougata Pal,et al.  Self-Consistent-Charge Density-Functional Tight-Binding Parameters for Cd-X (X = S, Se, Te) Compounds and Their Interaction with H, O, C, and N. , 2011, Journal of chemical theory and computation.

[82]  T. Shimanouchi Tables of Molecular Vibrational Frequencies Part 5 , 1972 .