Measuring and Improving Image Resolution by Adaptation of the Reciprocal Cell

Traditionally, discrete images are assumed to be sampled on a square grid and from a special kind of band-limited continuous image, namely one whose Fourier spectrum is contained within the rectangular “reciprocal cell” associated with the sampling grid. With such a simplistic model, resolution is just given by the distance between sample points.Whereas this model matches to some extent the characteristics of traditional acquisition systems, it doesn't explain aliasing problems, and it is no longer valid for certain modern ones, where the sensors may show a heavily anisotropic transfer function, and may be located on a non-square (in most cases hexagonal) grid.In this work we first summarize the generalizations of Fourier theory and of Shannon's sampling theorem, that are needed for such acquisition devices. Then we explore its consequences: (i) A new way of measuring the effective resolution of an image acquisition system; (ii) A more accurate way of restoring the original image which is represented by the samples. We show on a series of synthetic and real images, how the proposed methods make a better use of the information present in the samples, since they may drastically reduce the amount of aliasing with respect to traditional methods. Finally we show how in combination with Total Variation minimization, the proposed methods can be used to extrapolate the Fourier spectrum in a reasonable manner, visually increasing image resolution.

[1]  James C. Ehrhardt Hexagonal fast Fourier transform with rectangular output , 1993, IEEE Trans. Signal Process..

[2]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[3]  Andrés Almansa Sampling, interpolation and detection. Applications in satellite imaging. (Echantillonnage, interpolation et détection. Applications en imagerie satellitaire) , 2002 .

[4]  R.M. Mersereau,et al.  The processing of hexagonally sampled two-dimensional signals , 1979, Proceedings of the IEEE.

[5]  A. Laine,et al.  Hexagonal QMF Banks and Wavelets , 1998 .

[6]  R. Staunton Hexagonal Sampling in Image Processing , 1999 .

[7]  I. Daubechies,et al.  Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Stéphane Jaffard Construction et propriétés des bases d'ondelettes : Remarques sur la contrôlabilité exacte , 1989 .

[9]  Michel Chapron,et al.  Evaluation quantitative de la qualite de segmentation d'images de télédetection , 1995 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[11]  B. Rougé,et al.  La chaîne image SPOT5 THR : un exemple d'optimisation globale , 2001 .

[12]  L. J. Cutrona,et al.  The Processing of Hexagonally Sampled Two-Dimensional Signals , 1979 .

[13]  A. Cohen,et al.  Compactly supported bidimensional wavelet bases with hexagonal symmetry , 1993 .

[14]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[15]  Peter Stucki,et al.  An algorithmic comparison between square- and hexagonal-based grids , 1991, CVGIP Graph. Model. Image Process..

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  Andrew F. Laine,et al.  Hexagonal wavelet representations for recognizing complex annotations , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[18]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[19]  Christophe Latry,et al.  SPOT5 THR mode , 1998, Optics + Photonics.

[20]  Gerhard X. Ritter,et al.  Fast Fourier Transform for Hexagonal Aggregates , 2004, Journal of Mathematical Imaging and Vision.

[21]  Claude Gasquet,et al.  Analyse de Fourier et applications : filtrage, calcul numérique, ondelettes , 1990 .

[22]  John C. Russ,et al.  The image processing handbook (3. ed.) , 1995 .

[23]  R. Mersereau,et al.  The processing of periodically sampled multidimensional signals , 1983 .

[24]  J. Bony,et al.  Cours d'analyse : théorie des distributions et analyse de Fourier , 2001 .

[25]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[26]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[27]  Ian T. Young,et al.  Fundamentals of Image Processing , 1998 .

[28]  Y. Meyer Wavelets and Operators , 1993 .

[29]  A. Laine,et al.  Hexagonal Qmf Banks and Wavelets Hexagonal Qmf Banks and Wavelets , 1997 .

[30]  Bernd Jähne,et al.  Digital image processing (3rd ed.): concepts, algorithms, and scientific applications , 1995 .

[31]  Jean-Michel Morel,et al.  Les défauts du DVD sous l'œil de l'équation , 2001 .

[32]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[33]  Alexey G. Mihno,et al.  Nonuniform quantization of the image in infrared remote sensing systems: ways and devices for its elimination , 1997, Defense, Security, and Sensing.

[34]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[35]  M. Simoncelli,et al.  Subband Image Coding with Hexagonal Quadrature , 1990 .

[36]  Azriel Rosenfeld,et al.  Digital Picture Processing, Volume 1 , 1982 .

[37]  Charles Hermite,et al.  Cours d'analyse , 1873 .

[38]  R. Bracewell Two-dimensional imaging , 1994 .

[39]  Gunilla Borgefors,et al.  Distance transformations on hexagonal grids , 1989, Pattern Recognit. Lett..

[40]  Jelena Kovacevic,et al.  Wavelet families of increasing order in arbitrary dimensions , 2000, IEEE Trans. Image Process..