Leakage-Resilient Inner-Product Functional Encryption in the Bounded-Retrieval Model

We propose a leakage-resilient inner-product functional encryption scheme (IPFE) in the bounded-retrieval model (BRM). This is the first leakage-resilient functional encryption scheme in the BRM. In our leakage model, an adversary is allowed to obtain at most l-bit knowledge from each secret key. And our scheme can flexibly tolerate arbitrarily leakage bound l, by only increasing the size of secret keys, while keeping all other parts small and independent of l. Technically, we develop a new notion: Inner-product hash proof system (IP-HPS). IP-HPS is a variant of traditional hash proof systems. Its output of decapsulation is an inner-product value, instead of the encapsulated key. We propose an IP-HPS scheme under DDH-assumption. Then we show how to make an IP-HPS scheme to tolerate l′-bit leakage, and we can achieve arbitrary large l′ by only increasing the size of secret keys. Finally, we show how to build a leakage-resilient IPFE in the BRM with leakage bound l = l ′ n from our IP-HPS scheme.

[1]  Allison Bishop,et al.  Achieving Leakage Resilience through Dual System Encryption , 2011, TCC.

[2]  Vinod Vaikuntanathan,et al.  Signature Schemes with Bounded Leakage Resilience , 2009, ASIACRYPT.

[3]  Yevgeniy Dodis,et al.  Cryptography against Continuous Memory Attacks , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[4]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[5]  Guy N. Rothblum,et al.  Leakage-Resilient Signatures , 2010, TCC.

[6]  Brent Waters,et al.  Practical leakage-resilient identity-based encryption from simple assumptions , 2010, CCS '10.

[7]  Brent Waters,et al.  Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization , 2011, Public Key Cryptography.

[8]  Siu-Ming Yiu,et al.  From Quadratic Functions to Polynomials: Generic Functional Encryption from Standard Assumptions , 2019, C2SI.

[9]  Ronald Cramer,et al.  Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption , 2001, EUROCRYPT.

[10]  Brent Waters,et al.  Fuzzy Identity-Based Encryption , 2005, EUROCRYPT.

[11]  Vinod Vaikuntanathan,et al.  Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions , 2018, IACR Cryptol. ePrint Arch..

[12]  Yael Tauman Kalai,et al.  Reusable garbled circuits and succinct functional encryption , 2013, STOC '13.

[13]  R. Ostrovsky,et al.  Smooth Histograms for Sliding Windows , 2007, FOCS 2007.

[14]  Ryo Nishimaki,et al.  Leakage-resilient Identity-based Encryption in Bounded Retrieval Model with Nearly Optimal Leakage-Ratio , 2019, IACR Cryptol. ePrint Arch..

[15]  Stefan Dziembowski,et al.  Leakage-Resilient Cryptography , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[17]  Moni Naor,et al.  Public-Key Encryption in the Bounded-Retrieval Model , 2010, EUROCRYPT.

[18]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[19]  Dario Fiore,et al.  Practical Functional Encryption for Quadratic Functions with Applications to Predicate Encryption , 2017, CRYPTO.

[20]  Elaine Shi,et al.  Delegating Capabilities in Predicate Encryption Systems , 2008, ICALP.

[21]  Brice Minaud,et al.  Cryptanalysis of the New CLT Multilinear Map over the Integers , 2016, EUROCRYPT.

[22]  Brent Waters,et al.  Attribute-based encryption for fine-grained access control of encrypted data , 2006, CCS '06.

[23]  Vinod Vaikuntanathan,et al.  Functional Encryption with Bounded Collusions via Multi-party Computation , 2012, CRYPTO.

[24]  David Cash,et al.  Intrusion-Resilient Key Exchange in the Bounded Retrieval Model , 2007, TCC.

[25]  Mehdi Tibouchi,et al.  Cryptanalysis of GGH15 Multilinear Maps , 2016, CRYPTO.

[26]  Damien Stehlé,et al.  Fully Secure Functional Encryption for Inner Products, from Standard Assumptions , 2016, CRYPTO.

[27]  Angelo De Caro,et al.  Simple Functional Encryption Schemes for Inner Products , 2015, IACR Cryptol. ePrint Arch..

[28]  Craig Gentry,et al.  Hierarchical Identity Based Encryption with Polynomially Many Levels , 2009, TCC.

[29]  Man Ho Au,et al.  Leakage-Resilient Functional Encryption via Pair Encodings , 2016, ACISP.

[30]  Jung Hee Cheon,et al.  Cryptanalysis of the Multilinear Map over the Integers , 2014, EUROCRYPT.

[31]  Daniel Wichs,et al.  Fully Leakage-Resilient Signatures , 2011, Journal of Cryptology.

[32]  Brent Waters,et al.  A Punctured Programming Approach to Adaptively Secure Functional Encryption , 2015, CRYPTO.

[33]  Moni Naor,et al.  Public-Key Cryptosystems Resilient to Key Leakage , 2012, SIAM J. Comput..

[34]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[35]  Jie Chen,et al.  Leakage-resilient attribute based encryption in prime-order groups via predicate encodings , 2017, Designs, Codes and Cryptography.

[36]  Ben Lynn,et al.  Toward Hierarchical Identity-Based Encryption , 2002, EUROCRYPT.

[37]  Stefan Dziembowski,et al.  Intrusion-Resilient Secret Sharing , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[38]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[39]  Yevgeniy Dodis,et al.  Efficient Public-Key Cryptography in the Presence of Key Leakage , 2010, ASIACRYPT.

[40]  Hoeteck Wee,et al.  Multi-input Inner-Product Functional Encryption from Pairings , 2017, EUROCRYPT.

[41]  Yael Tauman Kalai,et al.  Overcoming the Hole in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[42]  Bruce Schneier,et al.  Side Channel Cryptanalysis of Product Ciphers , 1998, J. Comput. Secur..

[43]  Yevgeniy Dodis,et al.  Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model , 2009, CRYPTO.

[44]  Zvika Brakerski,et al.  Circular and Leakage Resilient Public-Key Encryption Under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back) , 2010, IACR Cryptol. ePrint Arch..

[45]  Adam O'Neill,et al.  Definitional Issues in Functional Encryption , 2010, IACR Cryptol. ePrint Arch..

[46]  Siva Sai Yerubandi,et al.  Differential Power Analysis , 2002 .

[47]  Yael Tauman Kalai,et al.  On cryptography with auxiliary input , 2009, STOC '09.

[48]  Vinod Vaikuntanathan,et al.  Simultaneous Hardcore Bits and Cryptography against Memory Attacks , 2009, TCC.

[49]  Joseph K. Liu,et al.  Leakage-Resilient Chosen-Ciphertext Secure Functional Encryption from Garbled Circuits , 2018, ISPEC.

[50]  Yael Tauman Kalai,et al.  Public-Key Encryption Schemes with Auxiliary Inputs , 2010, TCC.

[51]  Amit Sahai,et al.  Functional Encryption for Turing Machines , 2016, TCC.

[52]  Stefan Dziembowski,et al.  Intrusion-Resilience Via the Bounded-Storage Model , 2006, TCC.

[53]  Craig Gentry,et al.  Cryptanalyses of Candidate Branching Program Obfuscators , 2017, EUROCRYPT.

[54]  Giovanni Di Crescenzo,et al.  Perfectly Secure Password Protocols in the Bounded Retrieval Model , 2006, TCC.

[55]  Ariel J. Feldman,et al.  Lest we remember: cold-boot attacks on encryption keys , 2008, CACM.

[56]  Silvio Micali,et al.  Physically Observable Cryptography (Extended Abstract) , 2004, Theory of Cryptography Conference.

[57]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[58]  Brent Waters,et al.  Functional Encryption: Definitions and Challenges , 2011, TCC.

[59]  Siu-Ming Yiu,et al.  Identity-Based Encryption Resilient to Continual Auxiliary Leakage , 2012, EUROCRYPT.

[60]  Krzysztof Pietrzak,et al.  A Leakage-Resilient Mode of Operation , 2009, EUROCRYPT.

[61]  Fabrice Benhamouda,et al.  CCA-Secure Inner-Product Functional Encryption from Projective Hash Functions , 2017, IACR Cryptol. ePrint Arch..

[62]  Nico Döttling,et al.  Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13 , 2016, ICALP.