Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse

Using deep near-infrared spectroscopy, Kriek et al. found that ∼45% of massive galaxies at have evolved z ∼ 2.3 stellar populations and little or no ongoing star formation. Here we determine the sizes of these quiescent galaxies using deep, high-resolution images obtained with HST/NIC2 and laser guide star (LGS)–assisted Keck/adaptive optics (AO). Considering that their median stellar mass is , the galaxies are remarkably small, with 11 1.7 # 10 M, a median effective radius kpc. Galaxies of similar mass in the nearby universe have sizes of ≈5 kpc and r p 0.9 e average stellar densities that are 2 orders of magnitude lower than the galaxies. These results extend earlier z ∼ 2.3 work at and confirm previous studies at that lacked spectroscopic redshifts and imaging of sufficient z ∼ 1.5 z 1 2 resolution to resolve the galaxies. Our findings demonstrate that fully assembled early-type galaxies make up at most ∼10% of the population of K-selected quiescent galaxies at , effectively ruling out simple monolithic z ∼ 2.3 models for their formation. The galaxies must evolve significantly after , through dry mergers or other z ∼ 2.3 processes, consistent with predictions from hierarchical models. Subject headings: cosmology: observations — galaxies: evolution — galaxies: formation

[1]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[2]  J. Silk,et al.  A Simple Model for the Size Evolution of Elliptical Galaxies , 2006, astro-ph/0605436.

[3]  CO(1-0) in z >/~ 4 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs , 2006, astro-ph/0606422.

[4]  Garth D. Illingworth,et al.  Rapid evolution of the most luminous galaxies during the first 900 million years , 2006, Nature.

[5]  Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies , 2002, astro-ph/0211465.

[6]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[7]  P. Hall,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies , 2006, astro-ph/0612612.

[8]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[9]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[10]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[11]  P. Dokkum,et al.  The Fundamental Plane at z = 1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z > 1 , 2002, astro-ph/0210643.

[12]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[13]  Henry C. Ferguson,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 19/02/01 THE STELLAR POPULATIONS AND EVOLUTION OF LYMAN BREAK GALAXIES 1 , 2001 .

[14]  R. Davé,et al.  The Nature of CO Emission from z ∼ 6 Quasars , 2007, 0707.3141.

[15]  P. Dokkum,et al.  The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers , 2005, astro-ph/0506661.

[16]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[17]  Marijn Franx,et al.  THE SIZE EVOLUTION OF GALAXIES SINCE Z ∼ 3: COMBINING SDSS, GEMS AND FIRES 1 , 2006 .

[18]  M. Franx,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006 .

[19]  The local group of galaxies , 1999, astro-ph/9908050.

[20]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[21]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[22]  E. McGrath,et al.  Morphologies of Two Massive Old Galaxies at z ~ 2.5 , 2007, 0710.0426.

[23]  Max Tegmark,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004 .

[24]  P. Hopkins,et al.  The Fundamental Scaling Relations of Elliptical Galaxies , 2005, astro-ph/0511053.

[25]  R. Bender,et al.  The Kormendy relation of massive elliptical galaxies at z ~ 1.5: evidence for size evolution , 2006, astro-ph/0610241.

[26]  E. Gawiser,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z ∼ 2.3: REDSHIFTS AND IMPLICATIONS FOR BROADBAND PHOTOMETRIC STUDIES 1,2 , 2022 .

[27]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[28]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[29]  H. Rix,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 6/22/04 SPECTROSCOPIC IDENTIFICATION OF MASSIVE GALAXIES AT Z ∼ 2.3 WITH STRONGLY SUPPRESSED STAR FORMATION 1 , 2006 .

[30]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[31]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .