Approximated set-valued mapping approach for handling multiobjective bilevel problems

A significant amount of research has been done on bilevel optimization problems both in the realm of classical and evolutionary optimization. However, the multiobjective extensions of bilevel programming have received relatively little attention from researchers in both the domains. The existing algorithms are mostly brute-force nested strategies, and therefore computationally demanding. In this paper, we develop insights into multiobjective bilevel optimization through theoretical progress made in the direction of parametric multiobjective programming. We introduce an approximated set-valued mapping procedure that would be helpful in the development of efficient evolutionary approaches for solving these problems. The utility of the procedure has been emphasized by incorporating it in a hierarchical evolutionary framework and assessing the improvements. Test problems with varying levels of complexity have been used in the experiments. HighlightsMultiobjective bilevel optimization algorithms have received only limited attention.Approximation of set-valued mapping has been used to solve the problem.Set-valued mapping has been approximated using multiple quadratic fibers.Significant computational savings have been achieved using the multi-fiber idea.

[1]  Tharam S. Dillon,et al.  Decentralized multi-objective bilevel decision making with fuzzy demands , 2007, Knowl. Based Syst..

[2]  J. Morgan,et al.  Semivectorial Bilevel Optimization Problem: Penalty Approach , 2006 .

[3]  Sanaz Mostaghim,et al.  Bilevel Optimization of Multi-Component Chemical Systems Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[4]  Xiangyong Li,et al.  A Hierarchical Particle Swarm Optimization for Solving Bilevel Programming Problems , 2006, ICAISC.

[5]  Tapabrata Ray,et al.  An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems , 2016, Evolutionary Computation.

[6]  Jonathan F. Bard,et al.  Coordination of a multidivisional organization through two levels of management , 1983 .

[7]  Paul H. Calamai,et al.  Generating Linear and Linear-Quadratic Bilevel Programming Problems , 1993, SIAM J. Sci. Comput..

[8]  Mahyar A. Amouzegar,et al.  Test problem construction for linear bilevel programming problems , 1996, J. Glob. Optim..

[9]  Lucio Bianco,et al.  A Bilevel flow model for HazMat transportation network design , 2008 .

[10]  Kalyanmoy Deb,et al.  An improved bilevel evolutionary algorithm based on Quadratic Approximations , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[11]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[12]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[13]  Kalyanmoy Deb,et al.  Towards Understanding Bilevel Multi-objective Optimization with Deterministic Lower Level Decisions , 2015, EMO.

[14]  Kalyanmoy Deb,et al.  Handling inverse optimal control problems using evolutionary bilevel optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[15]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings: A View from Variational Analysis , 2009 .

[16]  Boris S. Mordukhovich,et al.  CODERIVATIVES OF FRONTIER AND SOLUTION MAPS IN PARAMETRIC MULTIOBJECTIVE OPTIMIZATION , 2008 .

[17]  Gabriele Eichfelder,et al.  Multiobjective bilevel optimization , 2010, Math. Program..

[18]  Nataliya I. Kalashnykova,et al.  Optimality conditions for bilevel programming problems , 2006 .

[19]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[20]  Boris S. Mordukhovich,et al.  Sufficient conditions for global weak Pareto solutions in multiobjective optimization , 2012 .

[21]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[22]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[23]  Kalyanmoy Deb,et al.  Multi-objective Stackelberg game between a regulating authority and a mining company: A case study in environmental economics , 2013, 2013 IEEE Congress on Evolutionary Computation.

[24]  Jen-Chih Yao,et al.  Point-based sufficient conditions for metric regularity of implicit multifunctions , 2009 .

[25]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[26]  Kalyanmoy Deb,et al.  Test Problem Construction for Single-Objective Bilevel Optimization , 2014, Evolutionary Computation.

[27]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[28]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  T. Q. Bao,et al.  Variational principles for set-valued mappings with applications to multiobjective optimization , 2007 .

[31]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[32]  Michael Florian,et al.  Optimizing frequencies in a transit network: a nonlinear bi-level programming approach , 1995 .

[33]  Kalyanmoy Deb,et al.  Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping , 2017, Eur. J. Oper. Res..

[34]  Martine Labbé,et al.  A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network , 2000, Transp. Sci..

[35]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[36]  Jacqueline Morgan,et al.  Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems , 2013 .

[37]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[38]  Kalyanmoy Deb,et al.  A bilevel optimization approach to automated parameter tuning , 2014, GECCO.

[39]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[40]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[41]  Ankur Sinha,et al.  Bilevel Multi-objective Optimization Problem Solving Using Progressively Interactive EMO , 2011, EMO.

[42]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[43]  Xinping Shi,et al.  Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers , 2001 .

[44]  J. Hämäläinen,et al.  Bi-level optimization for a dynamic multiobjective problem , 2012 .

[45]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[46]  Kalyanmoy Deb,et al.  Solving Bilevel Multicriterion Optimization Problems With Lower Level Decision Uncertainty , 2016, IEEE Transactions on Evolutionary Computation.

[47]  Kalyanmoy Deb,et al.  Transportation policy formulation as a multi-objective bilevel optimization problem , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[48]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[49]  Berç Rustem,et al.  Bilevel and Multilevel Programming , 2011 .