Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide.

We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100-fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide mode.

[1]  Tao Wei,et al.  Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection , 2008 .

[2]  Bahram Jalali,et al.  Demonstration of directly modulated silicon Raman laser. , 2005, Optics express.

[3]  R. Muller,et al.  Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. , 2010, Nano letters.

[4]  A. Haes,et al.  Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics , 2004, Expert review of molecular diagnostics.

[5]  O. Boyraz,et al.  Highly nonlinear submicron silicon nitride trench waveguide coated with gold nanoparticles , 2015 .

[6]  Federico Capasso,et al.  DNA-enabled self-assembly of plasmonic nanoclusters. , 2011, Nano letters.

[7]  K. Kneipp,et al.  Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. , 2006, Accounts of chemical research.

[8]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[9]  G. Lo,et al.  Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors. , 2012, Optics express.

[10]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[11]  F. Capolino,et al.  Comparison of electric field enhancements: linear and triangular oligomers versus hexagonal arrays of plasmonic nanospheres. , 2013, Optics express.

[12]  Kazuhiro Ikeda,et al.  Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. , 2008, Optics express.

[13]  J. Bowers,et al.  Multilayer Platform for Ultra-Low-Loss Waveguide Applications , 2012, IEEE Photonics Technology Letters.

[14]  Sergiy Korposh,et al.  Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles. , 2010, Optics express.

[15]  Luca Dal Negro,et al.  Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. , 2009, ACS nano.

[16]  R. Ragan,et al.  Design of a versatile chemical assembly method for patterning colloidal nanoparticles , 2009, Nanotechnology.

[17]  F. Capolino,et al.  Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles , 2014 .

[18]  H. Tan,et al.  A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications , 2012 .

[19]  M. Darvishzadeh-Varcheie,et al.  Field enhancement with plasmonic nano-antennas on silicon-based waveguides , 2015, SPIE NanoScience + Engineering.

[20]  S. Pandey,et al.  Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection. , 2012, International journal of biological macromolecules.

[21]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[22]  Rajan Jha,et al.  Nano-displacement sensor based on photonic crystal fiber modal interferometer. , 2015, Optics letters.

[23]  F. Capolino,et al.  Directing cluster formation of Au nanoparticles from colloidal solution. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[24]  Jürgen Popp,et al.  SERS: a versatile tool in chemical and biochemical diagnostics , 2008, Analytical and bioanalytical chemistry.

[25]  Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics , 2012 .

[26]  Florian Merget,et al.  Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. , 2013, Optics express.

[27]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[28]  L. Dal Negro,et al.  Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. , 2011, ACS nano.

[29]  Herman Schreuders,et al.  A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. , 2013, Optics express.

[30]  Filippo Capolino,et al.  Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Filippo Capolino,et al.  Surface enhanced Raman scattering for detection of Pseudomonas aeruginosa quorum sensing compounds , 2015, SPIE NanoScience + Engineering.

[32]  David R. Smith,et al.  Electromagnetic Enhancement Effect Caused by Aggregation on SERS-Active Gold Nanoparticles , 2011 .

[33]  Mohammadreza Khorasaninejad,et al.  Optical bio-chemical sensors on SNOW ring resonators. , 2011, Optics express.

[34]  Identification of Virulence Determinants in Influenza Viruses , 2014, Analytical chemistry.

[35]  F. Capolino,et al.  Fano resonances in metasurfaces made of linear trimers of plasmonic nanoparticles. , 2013, Optics letters.

[36]  Jianfang Wang,et al.  Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures , 2014 .

[37]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[38]  F. Capolino,et al.  Bridging the Gap between Crosslinking Chemistry and Directed Assembly of Metasurfaces Using Electrohydrodynamic Flow , 2016, 1609.06964.

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[40]  Qiancheng Zhao,et al.  Sub-micron silicon nitride waveguide fabrication using conventional optical lithography. , 2015, Optics express.

[41]  D. Kwong,et al.  A nano-opto-mechanical pressure sensor via ring resonator. , 2012, Optics express.

[42]  J. Hofkens,et al.  Live‐Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides , 2014, Advanced materials.

[43]  Tim Liedl,et al.  Single-molecule FRET ruler based on rigid DNA origami blocks. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Ingo Klimant,et al.  Optical Fiber Sensor for Biological Oxygen Demand , 1994 .

[45]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[46]  Qiancheng Zhao,et al.  Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles , 2015, Europe Optics + Optoelectronics.

[47]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[48]  F. Capolino,et al.  Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly. , 2012, Small.

[49]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.