Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials

Two switchable, mesoscopically periodic materials were created by combining crystalline colloidal array (CCA) self-assembly with the temperature-induced volume phase transition of poly(N-isopropylacrylamide) (PNIPAM). Body-centered-cubic CCAs of hydrated, swollen PNIPAM particles Bragg-diffract infrared, visible, and ultraviolet light weakly, whereas arrays of compact shrunken particles diffract efficiently. A tunable diffracting array was also created by embedding a CCA of polystyrene spheres within a PNIPAM hydrogel that swells and contracts with temperature; thus the array lattice constant varies with temperature, and the diffracted wavelength was thermally tunable across the entire visible spectrum. These materials may find applications in many areas of optics and materials science.

[1]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[2]  J. Reintjes,et al.  Nonlinear Optics III , 1992 .

[3]  S. Ohshima,et al.  Optimization of injection current and feedback phase of an optically self‐locked laser diode , 1992 .

[4]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[5]  A. Parentich,et al.  Optical examination of structured colloidal dispersions , 1980 .

[6]  J. K. Thomas,et al.  Photophysical Studies of Poly(N-isopropylacrylamide) Microgel Structures , 1994 .

[7]  Picosecond coherent Raman investigation of the relaxation of low frequency vibrational modes in amino acids and peptides , 1984 .

[8]  S. Asher,et al.  Nanosecond photothermal dynamics in colloidal suspension , 1992 .

[9]  S. Asher,et al.  Characterization of Optical Diffraction and Crystal Structure in Monodisperse Polystyrene Colloids , 1984 .

[10]  Sanford A. Asher,et al.  Dynamical Bragg diffraction from crystalline colloidal arrays , 1989 .

[11]  Alan J. Hurd,et al.  Single colloidal crystals , 1979, Nature.

[12]  S. Asher,et al.  Synthesis of Dyed Monodisperse Poly(methyl methacrylate) Colloids for the Preparation of Submicron Periodic Light-Absorbing Arrays , 1995 .

[13]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[14]  I. Krieger,et al.  Diffraction of light by ordered suspensions , 1969 .

[15]  P. K. Biswas Identification of a Kinetin-like Substance from Pea Seedlings, Pisum sativum , 1964, Nature.

[16]  W. Luck,et al.  Über Bragg‐Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices. I , 1963 .

[17]  S. Asher,et al.  Preparation and Properties of Tailored Morphology, Monodisperse Colloidal Silica-Cadmium Sulfide Nanocomposites , 1994 .

[18]  S. Asher,et al.  Development of a New Optical Wavelength Rejection Filter: Demonstration of its Utility in Raman Spectroscopy , 1984 .

[19]  E. Kamenetzky,et al.  Structure of Solidified Colloidal Array Laser Filters Studied by Cryogenic Transmission Electron Microscopy , 1994, Science.

[20]  I. Krieger,et al.  Diffraction of light by arrays of colloidal spheres , 1968 .

[21]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[22]  R. Pelton,et al.  Poly(N-isopropylacrylamide) Latices Prepared with Sodium Dodecyl Sulfate , 1993 .

[23]  G. Pratap,et al.  Electron-pair donors in carbocationic polymerization : synthesis of linear living α,ω-di(tert-chloro)polyisobutylenes , 1992 .

[24]  R. Spry,et al.  Theoretical Analysis of the Crystalline Colloidal Array Filter , 1986, Annual Meeting Optical Society of America.